scholarly journals Molecular Logic of Hypothalamus Development

2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A507-A507
Author(s):  
Thomas Kim

Abstract The hypothalamus is a central regulator of physiological homeostasis. During development, multiple transcription factors coordinate the patterning and specification of hypothalamic nuclei. However, the molecular mechanisms controlling hypothalamic patterning and cell fate specification are poorly understood. To identify genes that control these processes, we have previously used single-cell RNA sequencing (scRNA-Seq) to profile mouse hypothalamic gene expression across multiple developmental time points and established database HyDD (Hypothalamus Developmental Database). We next used HyDD to characterize multiple mutant lines targetting key transcription factors that came out from our scRNA-Seq database (Nkx2.2, Dlx1/2, Isl1, Foxd1, Lhx2), and was able to comprehensively characterize mutants that have altered hypothalamic patterning. Our phenotype result supports a modified columnar model of organization for the diencephalon, where prethalamus and hypothalamus are situated in adjacent dorsal and ventral domains of the anterior diencephalon. Furthermore, using our mouse hypothalamus as a guideline, we are comparing scRNA-Seq dataset of developing chicken, zebrafish and human hypothalamus, to identify evolutionarily conserved and divergent region-specific gene regulatory networks. Lastly, we are improving mouse HyDD, in order to characterize adult hypothalamus neuronal subtypes.

2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Thomas Kim

Abstract The hypothalamus is a central regulator of physiological homeostasis. During development, multiple transcription factors coordinate the patterning and specification of hypothalamic nuclei. However, the molecular mechanisms controlling hypothalamic patterning and cell fate specification are poorly understood. To identify genes that control these processes, we have used single-cell RNA sequencing (scRNA-Seq) to profile mouse hypothalamic gene expression across multiple developmental time points. We have further utilised scRNA-Seq to phenotype mutations in genes that play major roles in early hypothalamic patterning. To first understand hypothalamic development, hypothalami were collected at both embryonic (E10-E16, E18) and postnatal (PN4, PN8, PN14, PN45) time points. At early stages, when the bulk of hypothalamic patterning occurs (E11-E13), we observe a clear separation between mitotic progenitors and postmitotic neural precursor cells. We likewise observed clean segregation among cells expressing regional hypothalamic markers identified in previous large-scale analysis of hypothalamic development. This analysis reveals new region-specific markers and identifies candidate genes for selectively regulating patterning and cell fate specification in individual hypothalamic regions. With our rich dataset of developing mouse hypothalamus, we integrated our dataset with the Allen Brain Atlas in situ data, publicly available adult hypothalamic scRNA-Seq dataset to understand hierarchy of hypothalamic cell differentiation, as well as re-defining cell types of the hypothalamus. We next used scRNA-Seq to phenotype multiple mutant lines, including a line that has been extensively characterised as a proof of concept (Ctnnb1 overexpression), and lines that have not been characterised (Nkx2.1, Nkx2.2, Dlx1/2 deletion). We show that this approach can rapidly and comprehensively characterize mutants that have altered hypothalamic patterning, and in doing so, have identified multiple genes that simultaneously repress posterior hypothalamic identity while promoting prethalamic identity. This result supports a modified columnar model of organization for the diencephalon, where prethalamus and hypothalamus are situated in adjacent dorsal and ventral domains of the anterior diencephalon. These data serve as a resource for further studies of hypothalamic development and dysfunction, and able to delineate transcriptional regulatory networks of hypothalamic formation. Lastly, using our mouse hypothalamus as a guideline, we are comparing dataset of developing chicken, zebrafish and human hypothalamus, to identify evolutionarily conserved and divergent region-specific gene regulatory networks. We aim to use this knowledge and information of key molecular pathways of human hypothalamic development and produce human hypothalamus organoids.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kazuko Miyazaki ◽  
Masaki Miyazaki

Cell type-specific gene expression is driven through the interplay between lineage-specific transcription factors (TFs) and the chromatin architecture, such as topologically associating domains (TADs), and enhancer-promoter interactions. To elucidate the molecular mechanisms of the cell fate decisions and cell type-specific functions, it is important to understand the interplay between chromatin architectures and TFs. Among enhancers, super-enhancers (SEs) play key roles in establishing cell identity. Adaptive immunity depends on the RAG-mediated assembly of antigen recognition receptors. Hence, regulation of the Rag1 and Rag2 (Rag1/2) genes is a hallmark of adaptive lymphoid lineage commitment. Here, we review the current knowledge of 3D genome organization, SE formation, and Rag1/2 gene regulation during B cell and T cell differentiation.


2021 ◽  
Vol 11 ◽  
Author(s):  
Zeyaul Islam ◽  
Ameena Mohamed Ali ◽  
Adviti Naik ◽  
Mohamed Eldaw ◽  
Julie Decock ◽  
...  

Higher eukaryotic development is a complex and tightly regulated process, whereby transcription factors (TFs) play a key role in controlling the gene regulatory networks. Dysregulation of these regulatory networks has also been associated with carcinogenesis. Transcription factors are key enablers of cancer stemness, which support the maintenance and function of cancer stem cells that are believed to act as seeds for cancer initiation, progression and metastasis, and treatment resistance. One key area of research is to understand how these factors interact and collaborate to define cellular fate during embryogenesis as well as during tumor development. This review focuses on understanding the role of TFs in cell development and cancer. The molecular mechanisms of cell fate decision are of key importance in efforts towards developing better protocols for directed differentiation of cells in research and medicine. We also discuss the dysregulation of TFs and their role in cancer progression and metastasis, exploring TF networks as direct or indirect targets for therapeutic intervention, as well as specific TFs’ potential as biomarkers for predicting and monitoring treatment responses.


2019 ◽  
Author(s):  
Ning Wang ◽  
Andrew E. Teschendorff

AbstractInferring the activity of transcription factors in single cells is a key task to improve our understanding of development and complex genetic diseases. This task is, however, challenging due to the relatively large dropout rate and noisy nature of single-cell RNA-Seq data. Here we present a novel statistical inference framework called SCIRA (Single Cell Inference of Regulatory Activity), which leverages the power of large-scale bulk RNA-Seq datasets to infer high-quality tissue-specific regulatory networks, from which regulatory activity estimates in single cells can be subsequently obtained. We show that SCIRA can correctly infer regulatory activity of transcription factors affected by high technical dropouts. In particular, SCIRA can improve sensitivity by as much as 70% compared to differential expression analysis and current state-of-the-art methods. Importantly, SCIRA can reveal novel regulators of cell-fate in tissue-development, even for cell-types that only make up 5% of the tissue, and can identify key novel tumor suppressor genes in cancer at single cell resolution. In summary, SCIRA will be an invaluable tool for single-cell studies aiming to accurately map activity patterns of key transcription factors during development, and how these are altered in disease.


2021 ◽  
Author(s):  
Giulia Zancolli ◽  
Maarten Reijnders ◽  
Robert Waterhouse ◽  
Marc Robinson-Rechavi

Animals have repeatedly evolved specialized organs and anatomical structures to produce and deliver a cocktail of potent bioactive molecules to subdue prey or predators: venom. This makes it one of the most widespread convergent functions in the animal kingdom. Whether animals have adopted the same genetic toolkit to evolved venom systems is a fascinating question that still eludes us. Here, we performed the first comparative analysis of venom gland transcriptomes from 20 venomous species spanning the main Metazoan lineages, to test whether different animals have independently adopted similar molecular mechanisms to perform the same function. We found a strong convergence in gene expression profiles, with venom glands being more similar to each other than to any other tissue from the same species, and their differences closely mirroring the species phylogeny. Although venom glands secrete some of the fastest evolving molecules (toxins), their gene expression does not evolve faster than evolutionarily older tissues. We found 15 venom gland specific gene modules enriched in endoplasmic reticulum stress and unfolded protein response pathways, indicating that animals have independently adopted stress response mechanisms to cope with mass production of toxins. This, in turns, activates regulatory networks for epithelial development, cell turnover and maintenance which seem composed of both convergent and lineage-specific factors, possibly reflecting the different developmental origins of venom glands. This study represents the first step towards an understanding of the molecular mechanisms underlying the repeated evolution of one of the most successful adaptive traits in the animal kingdom.


2003 ◽  
Vol 31 (1) ◽  
pp. 292-297 ◽  
Author(s):  
K.U. Birkenkamp ◽  
P.J. Coffer

Recently, the FOXO (Forkhead box, class O) subfamily of Forkhead transcription factors has been identified as direct targets of phosphoinositide 3-kinase-mediated signal transduction. The AFX (acute-lymphocytic-leukaemia-1 fused gene from chromosome X), FKHR (Forkhead in rhabdomyosarcoma) and FKHR-L1 (FKHR-like 1) transcription factors are directly phosphorylated by protein kinase B, resulting in nuclear export and inhibition of transcription. This signalling pathway was first identified in the nematode worm Caenorhabditis elegans, where it has a role in regulation of the life span of the organism. Studies have shown that this evolutionarily conserved signalling module has a role in regulation of both cell-cycle progression and cell survival in higher eukaryotes. These effects are co-ordinated by FOXO-mediated induction of a variety of specific target genes that are only now beginning to be identified. Interestingly, FOXO transcription factors appear to be able to regulate transcription through both DNA-binding-dependent and -independent mechanisms. Our understanding of the regulation of FOXO activity, and defining specific transcriptional targets, may provide clues to the molecular mechanisms controlling cell fate decisions to divide, differentiate or die.


Blood ◽  
2009 ◽  
Vol 113 (5) ◽  
pp. 1016-1026 ◽  
Author(s):  
Shawn W. Cochrane ◽  
Ying Zhao ◽  
Robert S. Welner ◽  
Xiao-Hong Sun

Abstract Hematopoiesis consists of a series of lineage decisions controlled by specific gene expression that is regulated by transcription factors and intracellular signaling events in response to environmental cues. Here, we demonstrate that the balance between E-protein transcription factors and their inhibitors, Id proteins, is important for the myeloid-versus-lymphoid fate choice. Using Id1-GFP knockin mice, we show that transcription of the Id1 gene begins to be up-regulated at the granulocyte-macrophage progenitor stage and continues throughout myelopoiesis. Id1 expression is also stimulated by cytokines favoring myeloid differentiation. Forced expression of Id1 in multipotent progenitors promotes myeloid development and suppresses B-cell formation. Conversely, enhancing E-protein activity by expressing a variant of E47 resistant to Id-mediated inhibition prevents the myeloid cell fate while driving B-cell differentiation from lymphoid-primed multipotent progenitors. Together, these results suggest a crucial function for E proteins in the myeloid-versus-lymphoid lineage decision.


2020 ◽  
Author(s):  
Javier Canales ◽  
Felipe Uribe ◽  
Carlos Henríquez-Valencia ◽  
Carlos Lovazzano ◽  
Joaquín Medina ◽  
...  

Abstract Background: Sulfur is a major component of biological molecules and thus an essential element for plants. Deficiency of sulfate, the main source of sulfur in soils, negatively influences plant growth and crop yield. The effect of sulfate deficiency on plants has been well characterized at the physiological, transcriptomic and metabolomic levels in Arabidopsis thaliana and a limited number of crop plants. However, we still lack a thorough understanding of the molecular mechanisms and regulatory networks underlying sulfate deficiency in most plants. In this work we analyzed the impact of sulfate starvation on the transcriptome of tomato plants to identify regulatory networks and key transcriptional regulators at a temporal and organ scale. Results: Sulfate starvation reduces the growth of roots and leaves which is accompanied by major changes in the organ transcriptome, with the response being temporally earlier in roots than leaves. Comparative analysis showed that a major part of the Arabidopsis and tomato transcriptomic response to sulfate starvation is conserved between these plants and allowed for the identification of processes specifically regulated in tomato at the transcript level, including the control of internal phosphate levels. Integrative gene network analysis uncovered key transcription factors controlling the temporal expression of genes involved in sulfate assimilation, as well as cell cycle, cell division and photosynthesis during sulfate starvation in tomato roots and leaves. Interestingly, one of these transcription factors presents a high identity with SULFUR LIMITATION1, a central component of the sulfate starvation response in Arabidopsis. Conclusions: Together, our results provide the first comprehensive catalog of sulfate-responsive genes in tomato, as well as novel regulatory targets for future functional analyses in tomato and other crops.


2021 ◽  
Vol 11 ◽  
Author(s):  
Amogh Sood ◽  
Bin Zhang

The Waddington landscape provides an intuitive metaphor to view development as a ball rolling down the hill, with distinct phenotypes as basins and differentiation pathways as valleys. Since, at a molecular level, cell differentiation arises from interactions among the genes, a mathematical definition for the Waddington landscape can, in principle, be obtained by studying the gene regulatory networks. For eukaryotes, gene regulation is inextricably and intimately linked to histone modifications. However, the impact of such modifications on both landscape topography and stability of attractor states is not fully understood. In this work, we introduced a minimal kinetic model for gene regulation that combines the impact of both histone modifications and transcription factors. We further developed an approximation scheme based on variational principles to solve the corresponding master equation in a second quantized framework. By analyzing the steady-state solutions at various parameter regimes, we found that histone modification kinetics can significantly alter the behavior of a genetic network, resulting in qualitative changes in gene expression profiles. The emerging epigenetic landscape captures the delicate interplay between transcription factors and histone modifications in driving cell-fate decisions.


Physiology ◽  
2011 ◽  
Vol 26 (3) ◽  
pp. 146-155 ◽  
Author(s):  
Mathias Francois ◽  
Natasha L. Harvey ◽  
Benjamin M. Hogan

More than 100 years ago, Florence Sabin suggested that lymphatic vessels develop by sprouting from preexisting blood vessels, but it is only over the past decade that the molecular mechanisms underpinning lymphatic vascular development have begun to be elucidated. Genetic manipulations in mice have identified a transcriptional hub comprised of Prox1, CoupTFII, and Sox18 that is essential for lymphatic endothelial cell fate specification. Recent work has identified a number of additional transcription factors that regulate later stages of lymphatic vessel differentiation and maturation. This review highlights recent advances in our understanding of the transcriptional control of lymphatic vascular development and reflects on efforts to better understand the activities of transcriptional networks during this discrete developmental process. Finally, we highlight the transcription factors associated with human lymphatic vascular disorders, demonstrating the importance of understanding how the activity of these key molecules is regulated, with a view toward the development of innovative therapeutic avenues.


Sign in / Sign up

Export Citation Format

Share Document