scholarly journals Transcriptomic analysis at organ and time scale reveals gene regulatory networks controlling the sulfate starvation response of Solanum lycopersicum.

2020 ◽  
Author(s):  
Javier Canales ◽  
Felipe Uribe ◽  
Carlos Henríquez-Valencia ◽  
Carlos Lovazzano ◽  
Joaquín Medina ◽  
...  

Abstract Background: Sulfur is a major component of biological molecules and thus an essential element for plants. Deficiency of sulfate, the main source of sulfur in soils, negatively influences plant growth and crop yield. The effect of sulfate deficiency on plants has been well characterized at the physiological, transcriptomic and metabolomic levels in Arabidopsis thaliana and a limited number of crop plants. However, we still lack a thorough understanding of the molecular mechanisms and regulatory networks underlying sulfate deficiency in most plants. In this work we analyzed the impact of sulfate starvation on the transcriptome of tomato plants to identify regulatory networks and key transcriptional regulators at a temporal and organ scale. Results: Sulfate starvation reduces the growth of roots and leaves which is accompanied by major changes in the organ transcriptome, with the response being temporally earlier in roots than leaves. Comparative analysis showed that a major part of the Arabidopsis and tomato transcriptomic response to sulfate starvation is conserved between these plants and allowed for the identification of processes specifically regulated in tomato at the transcript level, including the control of internal phosphate levels. Integrative gene network analysis uncovered key transcription factors controlling the temporal expression of genes involved in sulfate assimilation, as well as cell cycle, cell division and photosynthesis during sulfate starvation in tomato roots and leaves. Interestingly, one of these transcription factors presents a high identity with SULFUR LIMITATION1, a central component of the sulfate starvation response in Arabidopsis. Conclusions: Together, our results provide the first comprehensive catalog of sulfate-responsive genes in tomato, as well as novel regulatory targets for future functional analyses in tomato and other crops.

2020 ◽  
Author(s):  
Javier Canales ◽  
Felipe Uribe ◽  
Carlos Henríquez-Valencia ◽  
Carlos Lovazzano ◽  
Joaquín Medina ◽  
...  

Abstract Background: Sulfur is a major component of biological molecules and thus an essential element for plants. Deficiency of sulfate, the main source of sulfur in soils, negatively influences plant growth and crop yield. The effect of sulfate deficiency on plants has been well characterized at the physiological, transcriptomic and metabolomic levels in Arabidopsis thaliana and a limited number of crop plants. However, we still lack a thorough understanding of the molecular mechanisms and regulatory networks underlying sulfate deficiency in most plants. In this work we analyzed the impact of sulfate starvation on the transcriptome of tomato plants to identify regulatory networks and key transcriptional regulators at a temporal and organ scale. Results: Sulfate starvation reduces the growth of roots and leaves which is accompanied by major changes in the organ transcriptome, with the response being temporally earlier in roots than leaves. Comparative analysis showed that a major part of the Arabidopsis and tomato transcriptomic response to sulfate starvation is conserved between these plants and allowed for the identification of processes specifically regulated in tomato at the transcript level, including the control of internal phosphate levels. Integrative gene network analysis uncovered key transcription factors controlling the temporal expression of genes involved in sulfate assimilation, as well as cell cycle, cell division and photosynthesis during sulfate starvation in tomato roots and leaves. Interestingly, one of these transcription factors presents a high identity with SULFUR LIMITATION1, a central component of the sulfate starvation response in Arabidopsis. Conclusions: Together, our results provide the first comprehensive catalog of sulfate-responsive genes in tomato, as well as novel regulatory targets for future functional analyses in tomato and other crops.


2020 ◽  
Author(s):  
Javier Canales ◽  
Felipe Uribe ◽  
Carlos Henríquez-Valencia ◽  
Carlos Lovazzano ◽  
Joaquín Medina ◽  
...  

Abstract Background: Sulfur (S) is a major component of biological molecules and thus an essential element for plants. Although the biochemistry and metabolism of sulfate is well understood, little is known about the regulatory mechanisms underlying plant responses to sulfate deprivation, especially in crop plants such as tomato (Solanum lycopersicum). In this work we analyzed the impact of sulfate starvation on the transcriptome of tomato plants to identify regulatory networks and key transcriptional regulators at a temporal and organ scale. Results: Sulfate starvation reduces the growth of roots and leaves which is accompanied by major changes in the organ transcriptome, with the response being temporally earlier in roots than leaves. Comparative analysis showed that a major part of the Arabidopsis and tomato transcriptomic response to sulfate starvation is conserved between these plants and allowed for the identification of processes specifically regulated in tomato, including the control of internal phosphate levels. Integrative gene network analysis uncovered key transcription factors controlling the temporal expression of genes involved in sulfate assimilation, as well as cell cycle, cell division and photosynthesis during sulfate starvation in tomato roots and leaves. Interestingly, one of these transcription factors presents a high identity with SLIM1, a central component of the sulfate starvation response in Arabidopsis. Conclusions: Together, our results provide the first comprehensive catalog of sulfate-responsive genes in tomato, as well as novel regulatory targets for future functional analyses in tomato and other crops.


Forests ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 920 ◽  
Author(s):  
Kang Du ◽  
Qiang Han ◽  
Ying Zhang ◽  
Xiangyang Kang

Plant polyploids tend to have large leaves, but their formation mechanism has not yet been well explained. Therefore, daily transcriptomic differences between triploids and diploids from a synthetic Populus sect. Tacamahaca three times a day (i.e., 04:00, 09:00, and 21:00) were investigated using high-throughput RNA-seq analysis. In this study, we identified several transcription factors associated with giant leaves. The combined effects included the high expression of several transcription factors (WRKY, MYB, etc.) and hormone-related genes (e.g., activates auxin, cytokine, and brassinosteroid synthesis-related genes) that accelerate the synthesis and accumulation of endogenous hormones. High levels of growth hormones were maintained by reducing the genes’ expression of hormone metabolism and degradation. The coordination of hormones accumulated sufficient materials and energy for leaf growth and development. Thereby, cell division and growth were accelerated which enhanced the photosynthesis of leaves, and the increased accumulation of photosynthetic products led to giant triploid leaves. This study lays the foundation for revealing the molecular mechanisms in the formation of giant leaves in polyploids.


Cells ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2690
Author(s):  
Mónica Fernández-Cortés ◽  
Eduardo Andrés-León ◽  
Francisco Javier Oliver

In highly metastatic tumors, vasculogenic mimicry (VM) involves the acquisition by tumor cells of endothelial-like traits. Poly-(ADP-ribose) polymerase (PARP) inhibitors are currently used against tumors displaying BRCA1/2-dependent deficient homologous recombination, and they may have antimetastatic activity. Long non-coding RNAs (lncRNAs) are emerging as key species-specific regulators of cellular and disease processes. To evaluate the impact of olaparib treatment in the context of non-coding RNA, we have analyzed the expression of lncRNA after performing unbiased whole-transcriptome profiling of human uveal melanoma cells cultured to form VM. RNAseq revealed that the non-coding transcriptomic landscape differed between olaparib-treated and non-treated cells: olaparib significantly modulated the expression of 20 lncRNAs, 11 lncRNAs being upregulated, and 9 downregulated. We subjected the data to different bioinformatics tools and analysis in public databases. We found that copy-number variation alterations in some olaparib-modulated lncRNAs had a statistically significant correlation with alterations in some key tumor suppressor genes. Furthermore, the lncRNAs that were modulated by olaparib appeared to be regulated by common transcription factors: ETS1 had high-score binding sites in the promoters of all olaparib upregulated lncRNAs, while MZF1, RHOXF1 and NR2C2 had high-score binding sites in the promoters of all olaparib downregulated lncRNAs. Finally, we predicted that olaparib-modulated lncRNAs could further regulate several transcription factors and their subsequent target genes in melanoma, suggesting that olaparib may trigger a major shift in gene expression mediated by the regulation lncRNA. Globally, olaparib changed the lncRNA expression landscape during VM affecting angiogenesis-related genes.


Endocrinology ◽  
2005 ◽  
Vol 146 (4) ◽  
pp. 2048-2054 ◽  
Author(s):  
Jennifer A. Mitchell ◽  
Stephen J. Lye

Abstract The expression of activator protein-1 (AP-1) transcription factors is increased in the myometrium at term and may therefore regulate the expression of genes, such as connexin 43 (Cx43), required for the onset of labor. The region upstream of the mouse, rat, and human Cx43 genes contains two consensus AP-1 binding sequences, a proximal AP-1, located close to the TATA box, and a distal AP-1, 1 kb upstream. A transient transfection system was developed in which Syrian hamster myometrial cells were transfected with Cx43 promoter-luciferase constructs in combination with expression vectors for the AP-1 family. Transfection with c-Jun or JunB had no effect on transcription from the Cx43 promoter, whereas transfection with JunD or combinations of Jun and Fos family members led to significant increases in transcription. Deletion of the distal AP-1 site did not abrogate transcription driven by Fos/Jun, whereas a 2-bp mutation in the proximal AP-1 site significantly reduced pCx43 transactivation by AP-1 dimers. Dimers comprising Fos/Jun proteins conferred greater transcriptional activity than Jun dimmers, with Fra-2/JunB combination conferring greatest activity. These data suggest that increased expression of Fos family members in the myometrium at term drives the increase in Cx43 transcription and expression during labor. Because expression of Fra-2 increases earlier than other Fos family members and confers the highest transcriptional drive to the Cx43 promoter, our data suggest that Fra-2 is a central component in the regulation of Cx43 expression during labor.


2020 ◽  
Author(s):  
Paulina G. Eusebi ◽  
Natalia Sevane ◽  
Thomas O’Rourke ◽  
Manuel Pizarro ◽  
Cedric Boeckx ◽  
...  

AbstractAggressiveness is one of the most basic behaviors, characterized by targeted intentional actions oriented to cause harm. The reactive type of aggression is regulated mostly by the brain’s prefrontal cortex; however, the molecular changes underlying aggressiveness in adults have not been fully characterized. Here we used an RNA-seq approach to investigate differential gene expression in the prefrontal cortex of bovines from the aggressive Lidia breed at different age stages: young three-year old and adult four-year-old bulls. A total of 50 up and 193 down-regulated genes in the adult group were identified. Furthermore, a cross-species comparative analysis retrieved 29 genes in common with previous studies on aggressive behaviors, representing an above-chance overlap with the differentially expressed genes in adult bulls.Particularly, we detected changes in the regulation of networks such as synaptogenesis, involved in maintenance and refinement of synapses, and the glutamate receptor pathway, which acts as excitatory driver in aggressive responses. Our results provide insights into candidate genes and networks involved in the molecular mechanisms leading to the maturation of the brain. The reduced reactive aggression typical of domestication has been proposed to form part of a retention of juvenile traits as adults (neoteny). The significant age-associated differential expression of genes implicated in aggressive behaviors and concomitant increase in Lidia cattle aggression validates this species as a novel model comparator to explore the impact of behavioral neoteny under domestication.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A507-A507
Author(s):  
Thomas Kim

Abstract The hypothalamus is a central regulator of physiological homeostasis. During development, multiple transcription factors coordinate the patterning and specification of hypothalamic nuclei. However, the molecular mechanisms controlling hypothalamic patterning and cell fate specification are poorly understood. To identify genes that control these processes, we have previously used single-cell RNA sequencing (scRNA-Seq) to profile mouse hypothalamic gene expression across multiple developmental time points and established database HyDD (Hypothalamus Developmental Database). We next used HyDD to characterize multiple mutant lines targetting key transcription factors that came out from our scRNA-Seq database (Nkx2.2, Dlx1/2, Isl1, Foxd1, Lhx2), and was able to comprehensively characterize mutants that have altered hypothalamic patterning. Our phenotype result supports a modified columnar model of organization for the diencephalon, where prethalamus and hypothalamus are situated in adjacent dorsal and ventral domains of the anterior diencephalon. Furthermore, using our mouse hypothalamus as a guideline, we are comparing scRNA-Seq dataset of developing chicken, zebrafish and human hypothalamus, to identify evolutionarily conserved and divergent region-specific gene regulatory networks. Lastly, we are improving mouse HyDD, in order to characterize adult hypothalamus neuronal subtypes.


2018 ◽  
Author(s):  
Whitney L. Dolan ◽  
Clint Chapple

ABSTRACTThe Mediator complex is a central component of transcriptional regulation in Eukaryotes. The complex is structurally divided into four modules known as the head, middle, tail and kinase modules, and in Arabidopsis thaliana, comprises 28-34 subunits. Here, we explore the functions of four Arabidopsis Mediator tail subunits, MED2, MED5a/b, MED16, and MED23, by comparing the impact of mutations in each on the Arabidopsis transcriptome. We find that these subunits affect both unique and overlapping sets of genes, providing insight into the functional and structural relationships between them. The mutants primarily exhibit changes in the expression of genes related to biotic and abiotic stress. We find evidence for a tissue specific role for MED23, as well as in the production of alternative transcripts. Together, our data help disentangle the individual contributions of these MED subunits to global gene expression and suggest new avenues for future research into their functions.


2021 ◽  
Vol 11 ◽  
Author(s):  
Amogh Sood ◽  
Bin Zhang

The Waddington landscape provides an intuitive metaphor to view development as a ball rolling down the hill, with distinct phenotypes as basins and differentiation pathways as valleys. Since, at a molecular level, cell differentiation arises from interactions among the genes, a mathematical definition for the Waddington landscape can, in principle, be obtained by studying the gene regulatory networks. For eukaryotes, gene regulation is inextricably and intimately linked to histone modifications. However, the impact of such modifications on both landscape topography and stability of attractor states is not fully understood. In this work, we introduced a minimal kinetic model for gene regulation that combines the impact of both histone modifications and transcription factors. We further developed an approximation scheme based on variational principles to solve the corresponding master equation in a second quantized framework. By analyzing the steady-state solutions at various parameter regimes, we found that histone modification kinetics can significantly alter the behavior of a genetic network, resulting in qualitative changes in gene expression profiles. The emerging epigenetic landscape captures the delicate interplay between transcription factors and histone modifications in driving cell-fate decisions.


2014 ◽  
Vol 115 (suppl_1) ◽  
Author(s):  
Pius N Nde ◽  
Aniekanabassi N Udoko ◽  
Candice A Johnson ◽  
Andrey Dykan ◽  
Girish Rachakonda ◽  
...  

Background: Trypanosoma cruzi the causative agent of Chagas heart disease (CHD) remains incurable. The major pathology induced by the parasite is cardiac fibrosis leading to heart failure followed by death. The mechanisms of T. cruzi induced cardio-pathology remains largely unknown. We hypothesize that T. cruzi infection regulates the expression of profibrotic genes in human cardiac myocytes (HCM), tilting the heart towards a profibrotic phenotype seen in CHD patients. Methods and Results: To elucidate the molecular mechanisms of T. cruzi induced cardiac fibrosis, we challenged primary HCM with T. cruzi for two hours and purified total RNA for microarray. We investigated changes at the whole transcriptome level on an affymetrix platform. The arrays were done in triplicates at different time points; changes in gene expression greater than 2-fold and having a Benjamini and Hochburg false discovery rate corrected p-value <0.05 were considered significant. The microarray data was validated using real-time PCR followed by PCR array and immunoblotting, to evaluate changes in the protein expression levels of fibrotic transcription factors. Protein expression levels were evaluated in triplicate and analyzed by ANOVA. The fibrotic interactome induced by T. cruzi in HCM was elucidated using Cytoscape. Our results indicate that exposure of HCM to T. cruzi upregulates the transcript levels of two transcription factors associated with fibrosis, SNAI1 (more than 2 fold up-regulated) and Early Growth Response protein 1, EGR1, (about four fold up-regulated). SNAI1 and EGR1 were increased at the protein level. Furthermore, we identified the first interactome regulating fibrosis in primary HCM induced by T. cruzi . Conclusions: This is the first report showing that T. cruzi upregulates the expression of profibrotic transcription factors in HCM early during the process of cellular infection and the operational fibrotic interactome. Thus, abnormal sustained expression of SNAI1 and EGR1 upregulate the expression of genes essential for conversion of HCM towards a profibrotic phenotype in CHD. Elucidation of the molecular mechanisms by which T. cruzi induces cardiac fibrosis will lead to the identification of new therapeutic targets for CHD.


Sign in / Sign up

Export Citation Format

Share Document