scholarly journals VDR/RXR and TCF4/β-Catenin Cistromes in Colonic Cells of Colorectal Tumor Origin: Impact on c-FOS and c-MYC Gene Expression

2012 ◽  
Vol 26 (1) ◽  
pp. 37-51 ◽  
Author(s):  
Mark B. Meyer ◽  
Paul D. Goetsch ◽  
J. Wesley Pike

Abstract Many of the transcriptional and growth regulating activities of 1α,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in the intestine and colon are recapitulated in the human colorectal cancer cell LS180. We therefore used this line together with chromatin immunoprecipitation-seq and gene expression analyses to identify the vitamin D receptor (VDR)/retinoid X receptor (RXR) and transcription factor 7-like 2 (TCF7L2/TCF4)/β-catenin cistromes and the genes that they regulate. VDR and RXR colocalized to predominantly promoter distal, vitamin D response element-containing sites in a largely ligand-dependent manner. These regulatory sites control the expression of both known as well as novel 1,25-(OH)2D3 target genes. TCF4 and β-catenin cistromes partially overlapped, contained TCF/lymphoid enhancer-binding factor consensus elements, and were only modestly influenced by 1,25-(OH)2D3. However, the two heterodimer complexes colocalized at sites near a limited set of genes that included c-FOS and c-MYC; the expression of both genes was modulated by 1,25-(OH)2D3. At the c-FOS gene, both VDR/RXR and TCF4/β-catenin bound to a single distal enhancer located 24 kb upstream of the transcriptional start site. At the c-MYC locus, however, binding was noted at a cluster of sites between −139 and −165 kb and at a site located −335 kb upstream. Examined as isolated enhancer fragments, these regions exhibited basal and 1,25-(OH)2D3-inducible activities that were interlinked to both VDR and β-catenin activation. These data reveal additional complexity in the regulation of target genes by 1,25-(OH)2D3 and support a direct action of both VDR and the TCF4/β-catenin regulatory complex at c-FOS and c-MYC.

2019 ◽  
Author(s):  
Joanna Mitchelmore ◽  
Nastasiya Grinberg ◽  
Chris Wallace ◽  
Mikhail Spivakov

AbstractIdentifying DNA cis-regulatory modules (CRMs) that control the expression of specific genes is crucial for deciphering the logic of transcriptional control. Natural genetic variation can point to the possible gene regulatory function of specific sequences through their allelic associations with gene expression. However, comprehensive identification of causal regulatory sequences in brute-force association testing without incorporating prior knowledge is challenging due to limited statistical power and effects of linkage disequilibrium. Sequence variants affecting transcription factor (TF) binding at CRMs have a strong potential to influence gene regulatory function, which provides a motivation for prioritising such variants in association testing. Here, we generate an atlas of CRMs showing predicted allelic variation in TF binding affinity in human lymphoblastoid cell lines (LCLs) and test their association with the expression of their putative target genes inferred from Promoter Capture Hi-C and immediate linear proximity. We reveal over 1300 CRM TF-binding variants associated with target gene expression, the majority of them undetected with standard association testing. A large proportion of CRMs showing associations with the expression of genes they contact in 3D localise to the promoter regions of other genes, supporting the notion of ‘epromoters’: dual-action CRMs with promoter and distal enhancer activity.


2008 ◽  
Vol 28 (21) ◽  
pp. 6668-6680 ◽  
Author(s):  
Albertus T. J. Wierenga ◽  
Edo Vellenga ◽  
Jan Jacob Schuringa

ABSTRACT The level of transcription factor activity critically regulates cell fate decisions, such as hematopoietic stem cell (HSC) self-renewal and differentiation. We introduced STAT5A transcriptional activity into human HSCs/progenitor cells in a dose-dependent manner by overexpression of a tamoxifen-inducible STAT5A(1*6)-estrogen receptor fusion protein. Induction of STAT5A activity in CD34+ cells resulted in impaired myelopoiesis and induction of erythropoiesis, which was most pronounced at the highest STAT5A transactivation levels. In contrast, intermediate STAT5A activity levels resulted in the most pronounced proliferative advantage of CD34+ cells. This coincided with increased cobblestone area-forming cell and long-term-culture-initiating cell frequencies, which were predominantly elevated at intermediate STAT5A activity levels but not at high STAT5A levels. Self-renewal of progenitors was addressed by serial replating of CFU, and only progenitors containing intermediate STAT5A activity levels contained self-renewal capacity. By extensive gene expression profiling we could identify gene expression patterns of STAT5 target genes that predominantly associated with a self-renewal and long-term expansion phenotype versus those that identified a predominant differentiation phenotype.


1996 ◽  
Vol 16 (1) ◽  
pp. 318-327 ◽  
Author(s):  
P Garcia-Villalba ◽  
A M Jimenez-Lara ◽  
A Aranda

The thyroid hormone, retinoic acid (RA), and vitamin D regulate gene expression by binding to similar receptors which act as ligand-inducible transcription factors. Incubation of pituitary GH4C1 cells with nanomolar concentrations of vitamin D markedly reduces the response of the rat growth hormone mRNA to thyroid hormone triiodothyronine (T3) and RA. The stimulation of growth hormone gene expression by both ligands is mediated by a common hormone response element (TREGH) present in the 5'-flanking region of the gene, and the inhibition caused by vitamin D is due to transcriptional interference of the vitamin D receptor on this DNA element. No inhibition of the basal promoter activity by the vitamin was observed. The response to T3 and RA of a heterologous promoter containing this element, the palindromic T3- and RA-responsive sequence TREPAL, or a direct repeat of the same motif is also inhibited by vitamin D. In contrast, vitamin D strongly induces the activity of constructs containing a vitamin D response element, and neither T3 nor RA reduces vitamin D-mediated transactivation. Transfection with an expression vector for the retinoid X receptor alpha (RXR alpha) increases transactivation by T3 and RA but does not abolish the inhibition caused by the vitamin. Gel retardation experiments show that the vitamin D receptor (VDR) as a heterodimer with RXR weakly binds to the T3- and RA-responsive elements. Additionally, VDR displaces binding of T3 and RA receptors in a dose-dependent manner. Our data suggest the formation of TR-VDR and RAR-VDR heterodimers with RXR. The fact that the same response element mediates opposite effects of at least four different nuclear receptors provides a greater complexity and flexibility of the transcriptional responses to their ligands.


2010 ◽  
Vol 9 (4) ◽  
pp. 514-531 ◽  
Author(s):  
Barbara Heise ◽  
Julia van der Felden ◽  
Sandra Kern ◽  
Mario Malcher ◽  
Stefan Brückner ◽  
...  

ABSTRACT In Saccharomyces cerevisiae, the TEA transcription factor Tec1 is known to regulate target genes together with a second transcription factor, Ste12. Tec1-Ste12 complexes can activate transcription through Tec1 binding sites (TCSs), which can be further combined with Ste12 binding sites (PREs) for cooperative DNA binding. However, previous studies have hinted that Tec1 might regulate transcription also without Ste12. Here, we show that in vivo, physiological amounts of Tec1 are sufficient to stimulate TCS-mediated gene expression and transcription of the FLO11 gene in the absence of Ste12. In vitro, Tec1 is able to bind TCS elements with high affinity and specificity without Ste12. Furthermore, Tec1 contains a C-terminal transcriptional activation domain that confers Ste12-independent activation of TCS-regulated gene expression. On a genome-wide scale, we identified 302 Tec1 target genes that constitute two distinct classes. A first class of 254 genes is regulated by Tec1 in a Ste12-dependent manner and is enriched for genes that are bound by Tec1 and Ste12 in vivo. In contrast, a second class of 48 genes can be regulated by Tec1 independently of Ste12 and is enriched for genes that are bound by the stress transcription factors Yap6, Nrg1, Cin5, Skn7, Hsf1, and Msn4. Finally, we find that combinatorial control by Tec1-Ste12 complexes stabilizes Tec1 against degradation. Our study suggests that Tec1 is able to regulate TCS-mediated gene expression by Ste12-dependent and Ste12-independent mechanisms that enable promoter-specific transcriptional control.


2012 ◽  
Vol 303 (7) ◽  
pp. G870-G878 ◽  
Author(s):  
Nicholas J. Koszewski ◽  
Ronald L. Horst ◽  
Jesse P. Goff

Synthetic conjugation of a glucuronide to 1,25-dihydroxyvitamin D3 (1,25D3) to produce β-25-monoglucuronide-1,25D3 (βGluc-1,25D3) renders the hormone biologically inactive and resistant to mammalian digestive enzymes. However, β-glucuronidase produced by bacteria in the lower intestinal tract can cleave off the glucuronide, releasing the active hormone. In mice given a single oral dose of 1,25D3, 24-hydroxylase (Cyp24a1) gene expression was strongly enhanced in the duodenum, but not in the colon, despite circulating concentrations of 1,25D3 that peaked at ∼3.0 nmol/l. In contrast, in mice treated with an equimolar dose of βGluc-1,25D3, Cyp24a1 gene expression increased 700-fold in the colon but was significantly weaker in the duodenum compared with mice treated with 1,25D3. Similar results were observed with another vitamin D-dependent gene. When administered subcutaneously, 1,25D3 weakly stimulated colon Cyp24a1 gene expression while βGluc-1,25D3 again resulted in strong enhancement. Surgical ligation to block passage of ingesta beyond the upper intestinal tract abolished upregulation of colon Cyp24a1 gene expression by orally and subcutaneously administered βGluc-1,25D3. Feeding βGluc-1,25D3 for 5 days revealed a linear, dose-dependent increase in colon Cyp24a1 gene expression but did not significantly increase plasma 1,25D3 or calcium concentrations. This study indicates that the colon is relatively insensitive to circulating concentrations of 1,25D3 and that the strongest gene enhancement occurs when the hormone reaches the colon via the lumen of the intestinal tract. These findings have broad implications for the use of vitamin D compounds in colon disorders and set the stage for future therapeutic studies utilizing βGluc-1,25D3 in their treatment.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11773
Author(s):  
Theodoros Simakou ◽  
Robin Freeburn ◽  
Fiona L. Henriquez

Background In injury or infection, monocytes migrate into the affected tissues from circulation and differentiate into macrophages which are subsequently involved in the inflammatory responses. Macrophage differentiation and activation have been studied in response to multiple chemokines and cytokines. However, mechanical, and physical stimuli can also influence macrophage differentiation, activation, cytokine production, and phagocytic activity. Methods In this study the macrophage differentiation from THP-1 monocytes was assessed upon the stimulation with 1,25-dihydroxyvitamin D3 and 1,000 Hz vibrations, using qPCR for quantification of transcript expression. Vitamin D binds the vitamin D receptor (VDR) and subsequently modulates the expression of a variety of genes in monocytes. The effects of the 1,000 Hz vibrational stimulation, and the combined treatment of vitamin D3 and 1000 Hz vibrations were unknown. The differentiation of macrophages was assessed by looking at transcription of macrophage markers (e.g., CD14, CD36), antigen presenting molecules (e.g., HLA-DRA), transcription factors (e.g., LEF-1, TCF7L2), and mechanosensors (e.g., PIEZO1 and PKD2). Results The results showed that vitamin D3 induced THP-1 macrophage differentiation, which was characterized by upregulation of CD14 and CD36, downregulation of HLA-DRA, upregulation of the PKD2 (TRPP2), and an inverse relationship between TCF7L2 and LEF-1, which were upregulated and downregulated respectively. The 1,000 Hz vibrations were sensed from the cells which upregulated PIEZO1 and TCF3, but they did not induce expression of genes that would indicate macrophage differentiation. The mRNA transcription profile in the cells stimulated with the combined treatment was comparable to that of the cells stimulated by the vitamin only. The 1,000 Hz vibrations slightly weakened the effect of the vitamin for the regulation of CD36 and HLA-DMB in the suspension cells, but without causing changes in the regulation patterns. The only exception was the upregulation of TCF3 in the suspension cells, which was influenced by the vibrations. In the adherent cells, the vitamin D3 cancelled the upregulating effect of the 1,000 Hz vibrations and downregulated TCF3. The vitamin also cancelled the upregulation of PIEZO1 gene by the 1,000 Hz vibrations in the combined treatment. Conclusion The mechanical stimulation with 1,000 Hz vibrations resulted in upregulation of PIEZO1 in THP-1 cells, but it did not affect the differentiation process which was investigated in this study. Vitamin D3 induced THP-1 macrophage differentiation and could potentially influence M2 polarization as observed by upregulation of CD36 and downregulation of HLA-DRA. In addition, in THP-1 cells undergoing the combined stimulation, the gene expression patterns were influenced by vitamin D3, which also ablated the effect of the mechanical stimulus on PIEZO1 upregulation.


Sign in / Sign up

Export Citation Format

Share Document