Novel truncating and missense mutations of the KCC3 gene associated with Andermann syndrome

Neurology ◽  
2006 ◽  
Vol 66 (7) ◽  
pp. 1044-1048 ◽  
Author(s):  
G. Uyanik ◽  
N. Elcioglu ◽  
J. Penzien ◽  
C. Gross ◽  
Y. Yilmaz ◽  
...  

Background: Andermann syndrome (OMIM 218000) is an autosomal recessive motor-sensory neuropathy associated with developmental and neurodegenerative defects. The cerebral MRI reveals a variable degree of agenesis of the corpus callosum. Recently, truncating mutations of the KCC3 gene (also known as SLC12A6) have been associated with Andermann syndrome.Methods: The authors assessed clinically and genetically three isolated cases from Germany and Turkey with symptoms consistent with Andermann syndrome.Results: The authors detected four novel mutations within the KCC3 gene in their patients: two different truncating mutations in the first patient, a homozygous truncating mutation in the second, and a homozygous missense mutation in the third patient. In contrast to the classic phenotype of the Andermann syndrome linked to truncating KCC3 mutations the phenotype and the course of the disease linked to the missense mutation appeared to be different (i.e., showing additional features like diffuse and widespread white matter abnormalities).Conclusions: Not only truncating but also missense mutations of the KCC3 gene are associated with Andermann syndrome. Different types of KCC3 mutations may determine different clinical phenotypes.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xing-Guang Ye ◽  
Zhi-Gang Liu ◽  
Jie Wang ◽  
Jie-Min Dai ◽  
Pei-Xiu Qiao ◽  
...  

YWHAG, which encodes an adapter protein 14-3-3γ, is highly expressed in the brain and regulates a diverse range of cell signaling pathways. Previously, eight YWHAG mutations have been identified in patients with epileptic encephalopathy (EE). In this study, using trios-based whole exome sequencing, we identified two novel YWHAG mutations in two unrelated families with childhood myoclonic epilepsy and/or febrile seizures (FS). The identified mutations included a heterozygous truncating mutation (c.124C>T/p.Arg42Ter) and a de novo missense mutation (c.373A>G/p.Lys125Glu). The two probands experienced daily myoclonic seizures that were recorded with ictal generalized polyspike-slow waves, but became seizure-free with simple valproate treatment. The other affected individuals presented FS. The truncating mutation was identified in the family with six individuals of mild phenotype, suggesting that YWHAG mutations of haploinsufficiency are relatively less pathogenic. Analysis on all missense mutations showed that nine mutations were located within 14-3-3γ binding groove and another mutation was located at residues critical for dimerization, indicating a molecular sub-regional effect. Mutation Arg132Cys, which was identified recurrently in five patients with EE, would have the strongest influence on binding affinity. 14-3-3γ dimers supports target proteins activity. Thus, a heterozygous missense mutation would lead to majority dimers being mutants; whereas a heterozygous truncating mutation would lead to only decreasing the number of wild-type dimer, being one of the explanations for phenotypical variation. This study suggests that YWHAG is potentially a candidate pathogenic gene of childhood myoclonic epilepsy and FS. The spectrum of epilepsy caused by YWHAG mutations potentially range from mild myoclonic epilepsy and FS to severe EE.


2015 ◽  
Author(s):  
Tychele Turner ◽  
Christopher Douville ◽  
Dewey Kim ◽  
Peter D Stenson ◽  
David N Cooper ◽  
...  

The role of rare missense variants in disease causation remains difficult to interpret. We explore whether the clustering pattern of rare missense variants (MAF<0.01) in a protein is associated with mode of inheritance. Mutations in genes associated with autosomal dominant (AD) conditions are known to result in either loss or gain of function, whereas mutations in genes associated with autosomal recessive (AR) conditions invariably result in loss of function. Loss- of-function mutations tend to be distributed uniformly along protein sequence, while gain-of- function mutations tend to localize to key regions. It has not previously been ascertained whether these patterns hold in general for rare missense mutations. We consider the extent to which rare missense variants are located within annotated protein domains and whether they form clusters, using a new unbiased method called CLUstering by Mutation Position (CLUMP). These approaches quantified a significant difference in clustering between AD and AR diseases. Proteins linked to AD diseases exhibited more clustering of rare missense mutations than those linked to AR diseases (Wilcoxon P=5.7x10-4, permutation P=8.4x10-4). Rare missense mutation in proteins linked to either AD or AR diseases were more clustered than controls (1000G) (Wilcoxon P=2.8x10-15 for AD and P=4.5x10-4 for AR, permutation P=3.1x10-12 for AD and P=0.03 for AR). Differences in clustering patterns persisted even after removal of the most prominent genes. Testing for such non-random patterns may reveal novel aspects of disease etiology in large sample studies.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4201-4201
Author(s):  
Edward Park ◽  
Leiqian Tai ◽  
Peggy Nakagawa ◽  
Loan Hsieh ◽  
Diane J. Nugent

Abstract Abstract 4201 Introduction Factor XIII deficient patients may present at any age, with a variety of bleeding symptoms, poor wound healing, and in females, frequent miscarriages. Factor XIII (FXIII) is a transglutaminase enzyme that was first discovered as a clotting protein in the coagulation cascade, but it is now understood that it cross-links proteins in the plasma, vascular matrix, endothelial cells, platelets and monocytes. In addition to maintaining normal hemostasis, FXIII plays a role in atherosclerosis, wound healing, inflammation, and pregnancy. FXIII circulates in plasma as a tetramer protein (FXIII-A2B2) held together by non-covalent bonds. FXIII has two catalytic A subunits (FXIII-A2) of 83kd and two non-catalytic B subunits or carrier subunits (FXIII-B2) of 79kd. Mutations have been identified in almost every exon of the FXIIIA subunit and often are unique to a particular cohort or family with Factor XIII deficiency. Our center has been characterizing patients with FXIII deficiency and has an IRB approved study to characterize bleeding phenotype in relation to genotype or mutational analysis. As part of this effort, we have identified 3 novel missense mutations, which we have not found in the FXIII database (<www.f13-database.de>) or in previous publications. Methods After obtaining informed consent, venous blood was collected in EDTA tubes for DNA isolation, PCR and ultimately DNA sequencing. DNA was isolated using QIAamp DNA Blood Midi Kit (Qiagen, Germantown, MD). Customary PCR was used to amplify the 15 exons for subunit A and the 12 exons for subunit B, using sequence specific primers based on previous publication and created to initiate outside of the encoding sequence. The nucleotide sequencing of amplified products was obtained via ABI 3730 DNA Analyzer (UCLA Sequencing and Genotyping Core). Results All three novel mutations were found in three, separate, unrelated individuals, with FXIII deficiency diagnosed early in life with a moderate to severe bleeding. Using the methods described above, the DNA sequencing and analysis for all exons for both the A and B subunits revealed three novel mutations, two on exon 12 subunit A and one on exon 10 subunit A. Patient 1 has a novel missense mutation in exon 10 at the 427 amino acid position, changing the aspartic acid into an asparagine (Asp427Asn) in the catalytic core. Patient 2 and 3 each had a unique mutation in exon 12. Exon 12 covers the transition from the catalytic core region and the Barrel 1 region of the FXIIIA molecule thus including portions of each functional region. Patient 2: An exon 12 missense mutation in aa 501 resulting in a change from glycine to an arginine (Gly501Arg) still in the catalytic core region. Patient 3 also had a mutation in exon 12 but in position 576 resulting in an amino acid change from threonine to methionine (Thr576Met) now in the Barrel 1 region. Patient 2 also had a missense mutation that has been previously reported in exon 3 (Arg77His) in the β-sandwich region. Three new missense mutations have been identified in patients with severe Factor XIII deficiency and a bleeding disorder. Previous reports of other point mutations in the FXIIIA catalytic core and barrel 1 regions have also been described in association with a hemorrhagic state in deficient patients. Ongoing protein expression studies will aid in our understanding of how these single amino acid substitutions result in such a serious bleeding diathesis. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 12 (1) ◽  
pp. 15-20 ◽  
Author(s):  
K Popovska-Jankovic ◽  
V Tasic ◽  
R Bogdanovic ◽  
P Miljkovic ◽  
E Baskin ◽  
...  

Five Novel Mutations in Cystinuria Genes SLC3A1 and SLC7A9Cystinuria is an autosomal recessive disorder that is characterized by impaired transport of cystine, lysine, ornithine and arginine in the proximal renal tubule and epithelial cells of the gastrointestinal tract. The transport of these amino acids is mediated by the rBAT/b0,+AT transporter, the subunits of which are encoded by the genes SLC3A1, located on chromosome 2p16.3-21, and SLC7A9, located on chromosome 19q12-13.1. Based on the urinary cystine excretion patterns of obligate heterozygotes, cystinuria is classified into type I (normal amino acid urinary pattern in heterozygotes) and non type I (a variable degree of urinary hyper excretion of cystine and dibasic amino acids in heterozygotes). On the basis of genetic aspects, cystinuria is classified into type A, is caused by mutations in both alleles of SLC3A1; type B, caused by mutations in both alleles of SLC7A9 and type AB, is caused by one mutation in SLC3A1 and one mutation in SLC7A9. Here we present two novel mutations in the SLC3A1 gene (C242R and L573X), which were found in patients from Serbia, and three in the SLC7A9 gene (G73R, V375I, 1048-1051 delACTC), found in patients from Serbia, Macedonia and Turkey, respectively.


1996 ◽  
Vol 76 (02) ◽  
pp. 253-257 ◽  
Author(s):  
Takeshi Hagiwara ◽  
Hiroshi Inaba ◽  
Shinichi Yoshida ◽  
Keiko Nagaizumi ◽  
Morio Arai ◽  
...  

SummaryGenetic materials from 16 unrelated Japanese patients with von Willebrand disease (vWD) were analyzed for mutations. Exon 28 of the von Willebrand factor (vWF) gene, where point mutations have been found most frequent, was screened by various restriction-enzyme analyses. Six patients were observed to have abnormal restriction patterns. By sequence analyses of the polymerase chain-reaction products, we identified a homozygous R1308C missense mutation in a patient with type 2B vWD; R1597W, R1597Q, G1609R and G1672R missense mutations in five patients with type 2A; and a G1659ter nonsense mutation in a patient with type 3 vWD. The G1672R was a novel missense mutation of the carboxyl-terminal end of the A2 domain. In addition, we detected an A/C polymorphism at nucleotide 4915 with HaeIII. There was no particular linkage disequilibrium of the A/C polymorphism, either with the G/A polymorphism at nucleotide 4391 detected with Hphl or with the C/T at 4891 detected with BstEll.


2013 ◽  
Vol 54 (3) ◽  
pp. 289-299
Author(s):  
Jürgen Hunkemöller

The recognition of topoi, i.e. traditional formulae, is an important means of musical analysis. To illustrate this, the paper discusses the types of the battaglia and the pastoral in Bach’s Cantata Halt im Gedächtnis Jesum Christ, and briefly enumerates different types of allusions to jazz in 20th-century compositions by Stravinsky, Milhaud, Blacher, Tippet, and Zimmermann. Then it raises the possibility of an analysis of topoi in Bartók’s music in four main categories. It considers Bartók’s musical quotations from Bach to Shostakovich; the chorale as special topos appearing in Mikrokosmos, in the Concerto for Orchestra, in the Adagio religioso of the Third Piano Concerto; the topos-like employment of the tritone; and finally the idea of a Bartókian Arcadia in the Finale of Music for Strings, and the integration of bird song in the Adagio religioso.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 235
Author(s):  
Nicolò Maria Ippolito ◽  
Ionela Birloaga ◽  
Francesco Ferella ◽  
Marcello Centofanti ◽  
Francesco Vegliò

The present paper is focused on the extraction of gold from high-grade e-waste, i.e., spent electronic connectors and plates, by leaching and electrowinning. These connectors are usually made up of an alloy covered by a layer of gold; sometimes, in some of them, a plastic part is also present. The applied leaching system consisted of an acid solution of diluted sulfuric acid (0.2 mol/L) with thiourea (20 g/L) as a reagent and ferric sulfate (21.8 g/L) as an oxidant. This system was applied on three different high-grade e-waste, namely: (1) Connectors with the partial gold-plated surface (Au concentration—1139 mg/kg); (2) different types of connectors with some of which with completely gold-plated surface (Au concentration—590 mg/kg); and (3) connectors and plates with the completely gold-plated surface (Au concentration—7900 mg/kg). Gold dissolution yields of 52, 94, and 49% were achieved from the first, second, and third samples, respectively. About 95% of Au recovery was achieved after 1.5 h of electrowinning at a current efficiency of only 4.06% and current consumption of 3.02 kWh/kg of Au from the leach solution of the third sample.


2014 ◽  
Vol 23 (22) ◽  
pp. 5940-5949 ◽  
Author(s):  
Muzammil A. Khan ◽  
Verena M. Rupp ◽  
Meritxell Orpinell ◽  
Muhammad S. Hussain ◽  
Janine Altmüller ◽  
...  

Blood ◽  
2008 ◽  
Vol 111 (7) ◽  
pp. 3468-3478 ◽  
Author(s):  
Adoración Venceslá ◽  
María Ángeles Corral-Rodríguez ◽  
Manel Baena ◽  
Mónica Cornet ◽  
Montserrat Domènech ◽  
...  

Abstract Hemophilia A (HA) is an X-linked bleeding disorder caused by a wide variety of mutations in the factor 8 (F8) gene, leading to absent or deficient factor VIII (FVIII). We analyzed the F8 gene of 267 unrelated Spanish patients with HA. After excluding patients with the common intron-1 and intron-22 inversions and large deletions, we detected 137 individuals with small mutations, 31 of which had not been reported previously. Eleven of these were nonsense, frameshift, and splicing mutations, whereas 20 were missense changes. We assessed the impact of the 20 substitutions based on currently available information about FV and FVIII structure and function relationship, including previously reported results of replacements at these and topologically equivalent positions. Although most changes are likely to cause gross structural perturbations and concomitant cofactor instability, p.Ala375Ser is predicted to affect cofactor activation. Finally, 3 further mutations (p.Pro64Arg, p.Gly494Val, and p.Asp2267Gly) appear to affect cofactor interactions with its carrier protein, von Willebrand factor, with the scavenger receptor low-density lipoprotein receptor–related protein (LRP), and/or with the substrate of the FVIIIapi•FIXa (Xase) complex, factor X. Characterization of these novel mutations is important for adequate genetic counseling in HA families, but also contributes to a better understanding of FVIII structure-function relationship.


Sign in / Sign up

Export Citation Format

Share Document