Cell behaviour during postembryonic pattern regulation in the insect abdomen (Oncopeltus fasciatus). I. Regeneration of segment borders

Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 221-235 ◽  
Author(s):  
G.L. Campbell ◽  
P.M.J. Shelton

The confrontation of cells from the anterior region of an abdominal segment of Oncopeltus with those from the posterior region of the same or the adjacent segment results in the generation of a segment border. The behaviour of epidermal cells during this regulation is described. It consists primarily of cell division and transverse elongation of cells at the site of confrontation. This behaviour can be separated from any associated purely with wound healing because a similar-sized wound to that used to ablate the segment border, performed within the segment, does not result in any cell division or elongation. The results are consistent with the view that there is a discontinuity in positional values at the segment border. The stability of such a discontinuity and the regeneration of segment borders are discussed in terms of there being a special population of cells at the segment border that have the property of isolating other cells with the maximum difference in positional values.

Development ◽  
1987 ◽  
Vol 101 (2) ◽  
pp. 237-246 ◽  
Author(s):  
G.L. Campbell

Cells from different levels in the anteroposterior axis of an abdominal segment of Oncopeltus were confronted by scraping away the strip of epidermis that separated these levels. The cells migrate over the wound and meet in the centre. The subsequent behaviour of the epidermal cells was followed by preparing whole mounts of integument at various times after confrontation. These operations may lead to cell division and an alteration in cell shape at the confrontation site. The intensity of the induced cell behaviour pattern depends on which levels in the segment are confronted and the evidence suggests that it is directly related to the magnitude of the difference in positional values between confronted cells. The results can be explained by a nonlinear gradient of positional values within the segment with a crowding of values in the posterior region. It is also shown that segment border formation requires the confrontation of cells with a near maximum possible difference in positional values.


Development ◽  
1983 ◽  
Vol 75 (1) ◽  
pp. 151-164
Author(s):  
Paul R. Truby

Recent models of pattern formation in insects have been derived largely from observations on regenerated cuticular patterns. Such models make assumptions about the behaviour of the underlying epidermal cells, their movement and patterns of cell division. The present study, designed to test these assumptions, looks at the patterns of wound healing and cell division after amputation at the trochanter—femur joint of the metathoracic leg in the cockroach. It shows that the wound is closed by cell migration and that regeneration occurs by dedifferentiation of the trochanter and distal coxa to form a blastema which grows and redifferentiates to form the new limb. The extent of the spread of dedifferentiation is confirmed by a scanning electron microscope study of the coxa after the moult following amputation. The results highlight the need for a greater knowledge of cell behaviour during pattern formation before we can begin to understand the processes involved in pattern formation.


Development ◽  
1985 ◽  
Vol 90 (1) ◽  
pp. 57-78
Author(s):  
Hilary Anderson ◽  
Vernon French

In a series of grafting operations on cockroach legs, epidermal cells from different positions or from the same position on the circumference of the femur were placed together. Where cells from different positions were confronted, new cuticular structures corresponding to the positions which would normally have lain between them were formed during the following moults. At the control junctions, where cells from the same positions were placed together, no new structures were formed. Grafted legs were examined histologically at various times after the operation. The events following grafting fell into four phases: wound healing — when epidermal cells migrated over the wound to re-establish epidermal continuity and cells adjacent to the wound divided to compensate for cell emigration; intercalation — when cell divisions took place at the host-graft borders where there was a positional discrepancy; proliferation — when the general growth of the epidermis occurred by widespread cell division; cuticle secretion — when apolysis occurred, cell division ceased, and cuticle secretion began. The results show that intercalary regeneration is associated with local cell division at the graft-host borders, and that these divisions are not confined to the normal proliferative phase of the moult cycle, but begin much earlier in the cycle, as soon as wound healing is complete. These results support epimorphic models (such as the Polar Coordinate Model) of pattern regulation, where change of positional value is tied to cell division, but they do not discount the possibility of a limited initial morphallactic phase.


2021 ◽  
Vol 83 (3) ◽  
Author(s):  
Ginger Egberts ◽  
Fred Vermolen ◽  
Paul van Zuijlen

AbstractTo deal with permanent deformations and residual stresses, we consider a morphoelastic model for the scar formation as the result of wound healing after a skin trauma. Next to the mechanical components such as strain and displacements, the model accounts for biological constituents such as the concentration of signaling molecules, the cellular densities of fibroblasts and myofibroblasts, and the density of collagen. Here we present stability constraints for the one-dimensional counterpart of this morphoelastic model, for both the continuous and (semi-) discrete problem. We show that the truncation error between these eigenvalues associated with the continuous and semi-discrete problem is of order $${{\mathcal {O}}}(h^2)$$ O ( h 2 ) . Next we perform numerical validation to these constraints and provide a biological interpretation of the (in)stability. For the mechanical part of the model, the results show the components reach equilibria in a (non) monotonic way, depending on the value of the viscosity. The results show that the parameters of the chemical part of the model need to meet the stability constraint, depending on the decay rate of the signaling molecules, to avoid unrealistic results.


2021 ◽  
Vol 5 (1) ◽  
pp. 2170011
Author(s):  
Haein Lee ◽  
Young‐Hyeon An ◽  
Tae Keun Kim ◽  
Jina Ryu ◽  
G. Kate Park ◽  
...  

Development ◽  
1986 ◽  
Vol 92 (1) ◽  
pp. 115-131
Author(s):  
Paul R. Truby

When the anteroposterior axis of a cockroach leg is reversed at a graft by exchanging a left leg for a right leg at the mid-tibia level, regeneration occurs in the region of the graft/host junction. This results in the formation of a pair of lateral supernumerary legs. In these experiments the patterns of cell division which take place during supernumerary leg formation were observed in sections of regenerating legs of the cockroach Leucophaea maderae. Early patterns of cell division resemble those seen in control grafts in which no axial reversal had been carried out during grafting. These cell divisions are associated with the process of wound healing. Later, a large area of the epidermis proximal to the graft/host junction becomes activated and shows a rapid rate of cell division. This area forms two outgrowths which grow by cell division throughout their epidermis to form the epidermis of the supernumerary legs. The results are more consistent with the view that the formation of supernumerary legs involves dedifferentiation of the epidermis in the region of the graft/host junction to form a blastema, rather than being due to local cell division at the point of maximum pattern discontinuity. This conclusion is used to offer an explanation for the range of different types of outcome of left-right grafts that has been observed.


Author(s):  
Sheema Jb ◽  
Waheeta Hopper

  Objective: Glycogen synthase kinase 3 beta (GSK3β) is one of the main targets for wound healing activity. Our objective is to identify novel inhibitors for GSK3β using in silico approach.Methods: Grid-based molecular docking, energy-based pharmacophore (e-pharmacophore) modeling, and molecular dynamics (MD) studies were performed for phytocompounds with GSK3β and compared with standard drugs using Schrodinger software.Results: The glide scores and the molecular interactions of the phytocompounds were well comparable to the standard drugs. The MD was performed for the target bound to the best scoring ligand, entagenic acid. The pharmacophore features of this docked complex were modeled as e-pharmacophore. The constructed e-pharmacophore model was screened against phytocompounds retrieved from literature to identify the ligands with similar pharmacophore features.Conclusion: The glide scores of fukinolic acid, cimicifugic acid, and linarin were −10.99, −8.28, and −7.25 kcal/mol, respectively. The further 50 nanoseconds MD study determined the stability of GSK3β-linarin complex. Nitrofurazone and sulfathiazole drugs can lead to systemic side effects. Hence, it is concluded that linarin could be a potent wound healing compound against GSK3β.


2016 ◽  
Vol 40 ◽  
pp. 158-166 ◽  
Author(s):  
Heni Rachmawati ◽  
Evi Sulastri ◽  
Maria Immaculata Iwo ◽  
Dewi Safitri ◽  
Annisa Rahma

Bromelain is a mixture of proteolytic enzymes presence in all tissues of pineapple (Ananas comosus). It is known for clinical use as debridement for burn treatment. However, it is easily degraded by light, high temperature and pH. Nanoemulsion of bromelain is promising to increase its stability. In this study, we investigated the nanoemulsion of bromelain and its formulation into gel preparation in order to increase its efficacy for the burn treatment. Spontaneous or self-nanoemulsifying was applied to form nanoemulsion of bromelain (NEB). Bromelain was incorporated in various types of oil phase i.e virgin coconut oil (VCO), olive oil, vitamin E acetate and combination of both vitamin E acetate and VCO. Cremophor RH 40 was used together with polyethyleneglycol 400 to reduce oil-water interface tension. The stability of NEB in different oil phases was evaluated including particle size, polydispersity index, zeta potential, enzymatic activity and nanoemulsion morphology. Further, the most stable NEB was incorporated into hydrophilic gel matrix. An in vivo evaluation was carried out in hot plate-induced burn skin of New Zealand rabbit. Treatment of wounds was given by applying the preparations: NEB and the nanoemulsion bromelain-CMC gel (GKNB), using a standard protocol. As a control, untreated rabbit burned skin was provided. The efficacy of NEB was evaluated by observing wound contraction, eschar score, erythemic score, pus score and edema. After 14 days of storage, nanoemulsion using vitamin E acetate was found to be the most appropriate formula to encapsulate bromelain with good physical and chemical stabilities. This formula shows clear visual appearance with globule diameter of 74.37 nm, narrow size distribution, high loading efficiency of 97.96 %, and ability to maintain the enzymatic activity of bromelain compared to gel preparation using corresponding bromelain nanoemulsion. The vitamin E acetate nanoemulsion system shows better reduction in wound contraction until the 14th day of observation as well as other relevant parameters for wound healing effects. Taken together, bromelain formulated with the vitamin E acetate nanoemulsion improved the stability of bromelain and showed better activity to heal burnt skin on the animal model tested. The gel matrix retained the release of bromelain resulting in lower wound healing effect but it may have prolonged activity.


2020 ◽  
Vol 61 (8) ◽  
pp. 19 ◽  
Author(s):  
Weijie Zhang ◽  
Fei Yu ◽  
Chenxi Yan ◽  
Chunyi Shao ◽  
Ping Gu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document