scholarly journals Transcriptome-based identification and characterization of genes responding to imidacloprid in Myzus persicae

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Jianyu Meng ◽  
Xingjiang Chen ◽  
Changyu Zhang

Abstract Myzus persicae is a serious and widespread agricultural pest, against which, imidacloprid remains an effective control measure. However, recent reports indicate that this aphid has evolved and developed resistance to imidacloprid. This study aimed to elucidate the underlying mechanisms and genetic basis of this resistance by conducting comparative transcriptomics studies on both imidacloprid-resistant (IR) and imidacloprid-susceptible (IS) M. persicae. The comparative analysis identified 252 differentially expressed genes (DEGs) among the IR and IS M. persicae transcriptomes. These candidate genes included 160 and 92 genes that were down- and up-regulated, respectively, in the imidacloprid-resistant strain. Using functional classification in the GO and KEGG databases, 187 DEGs were assigned to 303 functional subcategories and 100 DEGs were classified into 45 pathway groups. Moreover, several genes were associated with known insecticide targets, cuticle, metabolic processes, and oxidative phosphorylation. Quantitative real-time PCR of 10 DEGs confirmed the trends observed in the RNA sequencing expression profiles. These findings provide a valuable basis for further investigation into the complicated mechanisms of imidacloprid resistance in M. persicae.

2011 ◽  
Vol 106 (4) ◽  
pp. 1713-1721 ◽  
Author(s):  
Matias J. Ison ◽  
Florian Mormann ◽  
Moran Cerf ◽  
Christof Koch ◽  
Itzhak Fried ◽  
...  

Neurons in the medial temporal lobe (MTL) respond selectively to pictures of specific individuals, objects, and places. However, the underlying mechanisms leading to such degree of stimulus selectivity are largely unknown. A necessary step to move forward in this direction involves the identification and characterization of the different neuron types present in MTL circuitry. We show that putative principal cells recorded in vivo from the human MTL are more selective than putative interneurons. Furthermore, we report that putative hippocampal pyramidal cells exhibit the highest degree of selectivity within the MTL, reflecting the hierarchical processing of visual information. We interpret these differences in selectivity as a plausible mechanism for generating sparse responses.


2018 ◽  
Vol 8 (1) ◽  
pp. 42-50
Author(s):  
AMONO RACHEAL ◽  
CHRISTOPHER J. KASANGA ◽  
DENIS K. BYARUGABA

Racheal A, Kasanga CJ, Byarugaba DK. 2018. Identification and characterization of Flavobacteriaceae from farmed Oreochromis niloticusand Clarius garieoinus. Bonorowo Wetlands 2: 42-50. Bacteria under family Flavobacteriaceae (in this study were also referred to as Flavobacteria) are important pathogens of fish, people, many other animals and plants. In this study, Flavobacteria from Nile tilapia (Oreochromis niloticus) and African catfish (Clarius gariepinus) were identified and characterized from the selected farms in Uganda. Gill and skin swabs were obtained from a total of 119 fish from 19 farms and were dissected aseptically to sample internal organs. The samples were inoculated onto Sheih media and incubated at 25°C for 48 hours. The suspected isolates were identified by colon characteristics, conventional biochemical tests and API 20 NE kits. The isolates were grouped into eight based on colon characteristic similarity. One isolate was selected per group for 16S rRNA gene sequencing and identified using the EZbiocloud.net ID software. Phylogenetic analysis of selected isolates was performed using the 16S rRNA gene sequences in BioEdit and MEGA 7.0.2 software. Basing on extrapolation of sequence analysis of the selected isolates, out of the 86 isolates, Myroides marinus was the most predominant species taking up 4 of the 8 groups (60 isolates) in 13 farms. The rest of the groups comprised of; Acinetobacter pitti, one group (6 isolates) in 6 farms, Chryseobacterium gambrini 2 groups (3 isolates) in 3 farms and one isolate was unidentified, in 3 farms. However, a total of 16 isolates did not grow on sub culturing. Phylogenetic analysis indicated that M. marinus isolates grouped with other M. marinus isolates from gene bank with significant intra-species diversity which was also observed with C. gambrini isolates. All the sampled farms had at least one isolate of a Flavobacterium from Tilapia and/or Catfish. Pathogenicity studies should be conducted on the isolates to establish their importance as fish pathogens and transmission dynamics so that an appropriate control measure can be recommended.


2021 ◽  
Author(s):  
Ya Li ◽  
Xiuxia Zheng ◽  
Mengtian Pei ◽  
Mengting Chen ◽  
Shengnan Zhang ◽  
...  

Genes encoding for proteins containing the DNA binding Myb domain have been suggested to be important in regulating development and stress response in eukaryotes, including fungi. Magnaporthe oryzae (teleomorph Pyricularia oryzae) is considered the most destructive pathogen of rice. We screen the M. oryzae genome for all genes encoding proteins containing Myb domains since these genes could be essential during pathogenesis. We found 19 genes Myb1-19. Only a few have previously been investigated, and only one has proven to be involved in pathogenesis. We tried to delete the other 18 genes and succeeded with all except 6, five of which could be essential. RT-qPCR showed that all 19 genes are expressed during pathogenesis, although at different levels and with different expression profiles. To our surprise, only deletions of the genes encoding proteins MoMyb2, MoMyb13, and MoMyb15 showed growth, conidiation, and infection phenotypes, indicating that they are essential on their own during infection. This lack of phenotypes for the other mutants surprised us, and we extended the analysis to look for expression co-regulation and found 5 co-regulated groups of predicted proteins with Myb-domains. We point to likely compensatory regulations of the other Myb-family genes hiding the effect of many deletions. Further studies of the Myb-family genes are thus of interest since revealing the functions of these genes with a possible effect on pathogenicity since these could be targets for future measures to control M. oryzae in rice.


2020 ◽  
Author(s):  
Yinbo Ma ◽  
Sushil Satish Chhapekar ◽  
Lu Lu ◽  
Sangheon Oh ◽  
Sonam Singh ◽  
...  

Abstract Background: The nucleotide-binding site–leucine-rich repeat (NBS-LRR) genes are important for plant development and disease resistance. Although genome-wide studies of NBS-encoding genes have been performed in several species, the evolution, structure, expression, and function of these genes remain unknown in radish (Raphanus sativus L.). A recently released draft R. sativus L. reference genome has facilitated the genome-wide identification and characterization of NBS-encoding genes in radish.Results: A total of 225 NBS-encoding genes were identified in the radish genome based on the essential NB-ARC domain through HMM search and Pfam database, with 202 mapped onto nine chromosomes and the remaining 23 localized on different scaffolds. According to a gene structure analysis, we identified 99 NBS-LRR-type genes and 126 partial NBS-encoding genes. Additionally, 80 and 19 genes respectively encoded an N-terminal Toll/interleukin-like domain and a coiled-coil domain. Furthermore, 72% of the 202 NBS-encoding genes were grouped in 48 clusters distributed in 24 crucifer blocks on chromosomes. The U block on chromosomes R02, R04, and R08 had the most NBS-encoding genes (48), followed by the R (24), D (23), E (23), and F (17) blocks. These clusters were mostly homogeneous, containing NBS-encoding genes derived from a recent common ancestor. Tandem (15 events) and segmental (20 events) duplications were revealed in the NBS family. Comparative evolutionary analyses of orthologous genes among Arabidopsis thaliana, Brassica rapa, and Brassica oleracea reflected the importance of the NBS-LRR gene family during evolution. Moreover, examinations of cis-elements identified 70 major elements involved in responses to methyl jasmonate, abscisic acid, auxin, and salicylic acid. According to RNA-seq expression analyses, 75 NBS-encoding genes contributed to the resistance of radish to Fusarium wilt. A quantitative real-time PCR analysis revealed that RsTNL03 (Rs093020) and RsTNL09 (Rs042580) expression positively regulates radish resistance to Fusarium oxysporum, in contrast to the negative regulatory role for RsTNL06 (Rs053740).Conclusions: The NBS-encoding gene structures, tandem and segmental duplications, synteny, and expression profiles in radish were elucidated for the first time and compared with those of other Brassicaceae family members (A. thaliana, B. oleracea, and B. rapa) to clarify the evolution of the NBS gene family. These results may be useful for functionally characterizing NBS-encoding genes in radish.


Gene ◽  
2021 ◽  
Vol 769 ◽  
pp. 145206
Author(s):  
Chengdong Wang ◽  
Feng Li ◽  
Linhua Deng ◽  
Mingzhou Li ◽  
Ming Wei ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document