Cell interactions involved in development of the bilaterally symmetrical intestinal valve cells during embryogenesis in Caenorhabditis elegans

Development ◽  
1992 ◽  
Vol 116 (4) ◽  
pp. 1113-1122 ◽  
Author(s):  
B. Bowerman ◽  
F.E. Tax ◽  
J.H. Thomas ◽  
J.R. Priess

We describe two different cell interactions that appear to be required for the proper development of a pair of bilaterally symmetrical cells in Caenorhabditis elegans called the intestinal valve cells. Previous experiments have shown that at the beginning of the 4-cell stage of embryogenesis, two sister blastomeres called ABa and ABp are equivalent in development potential. We show that cell interactions between ABp and a neighboring 4-cell-stage blastomere called P2 distinguish the fates of ABa and ABp by inducing descendants of ABp to produce the intestinal valve cells, a cell type not made by ABa. A second cell interaction appears to occur later in embryogenesis when two bilaterally symmetrical descendants of ABp, which both have the potential to produce valve cells, contact each other; production of the valve cells subsequently becomes limited to only one of the two descendants. This second interaction does not occur properly if the two symmetrical descendants of ABp are prevented from contacting each other. Thus the development of the intestinal valve cells appears to require both an early cell interaction that establishes a bilaterally symmetrical pattern of cell fate and a later interaction that breaks the symmetrical cell fate pattern by restricting to only one of two cells the ability to produce a pair of valve cells.

Development ◽  
1995 ◽  
Vol 121 (2) ◽  
pp. 263-271 ◽  
Author(s):  
A.P. Newman ◽  
J.G. White ◽  
P.W. Sternberg

The anchor cell (AC) of the Caenorhabditis elegans gonad has a critical role in the development of a functional egg-laying system, which is accomplished through cell-cell interactions. Lateral inhibitory lin-12-mediated signaling among two bipotential cells causes one to adopt the ventral uterine precursor (VU) cell fate while the other becomes the AC. The AC then induces formation of vulval tissue. We find that the AC also induces a particular ventral uterine intermediate precursor fate (pi) by a mechanism that is genetically and temporally distinct from vulval induction. This process requires lin-12, but unlike previously described lin-12-mediated decisions, signaling is unidirectional, is between dissimilar cells and does not involve lateral inhibition. The pi fates are necessary for egg laying and appear to produce a distinct specialized cell type. Thus, patterning of the ventral uterus by the AC is crucial to the development of a functional egg-laying system.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3365
Author(s):  
Gabriela Maria Guerra ◽  
Doreen May ◽  
Torsten Kroll ◽  
Philipp Koch ◽  
Marco Groth ◽  
...  

SMG6 is an endonuclease, which cleaves mRNAs during nonsense-mediated mRNA decay (NMD), thereby regulating gene expression and controling mRNA quality. SMG6 has been shown as a differentiation license factor of totipotent embryonic stem cells. To investigate whether it controls the differentiation of lineage-specific pluripotent progenitor cells, we inactivated Smg6 in murine embryonic neural stem cells. Nestin-Cre-mediated deletion of Smg6 in mouse neuroprogenitor cells (NPCs) caused perinatal lethality. Mutant mice brains showed normal structure at E14.5 but great reduction of the cortical NPCs and late-born cortical neurons during later stages of neurogenesis (i.e., E18.5). Smg6 inactivation led to dramatic cell death in ganglionic eminence (GE) and a reduction of interneurons at E14.5. Interestingly, neurosphere assays showed self-renewal defects specifically in interneuron progenitors but not in cortical NPCs. RT-qPCR analysis revealed that the interneuron differentiation regulators Dlx1 and Dlx2 were reduced after Smg6 deletion. Intriguingly, when Smg6 was deleted specifically in cortical and hippocampal progenitors, the mutant mice were viable and showed normal size and architecture of the cortex at E18.5. Thus, SMG6 regulates cell fate in a cell type-specific manner and is more important for neuroprogenitors originating from the GE than for progenitors from the cortex.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1267-1277 ◽  
Author(s):  
B. Goldstein

The gut of C. elegans derives from all the progeny of the E blastomere, a cell of the eight cell stage. Previous work has shown that gut specification requires an induction during the four cell stage (Goldstein, B. (1992) Nature 357, 255–257). Blastomere isolation and recombination experiments were done to determine which parts of the embryo can respond to gut induction. Normally only the posterior side of the EMS blastomere contacts the inducing cell, P2. When P2 was instead placed in a random position on an isolated EMS, gut consistently differentiated from the daughter of EMS contacting P2, indicating that any side of EMS can respond to gut induction. Additionally, moving P2 around to the opposite side of EMS in an otherwise intact embryo caused EMS's two daughter cells to switch lineage timings, and gut to differentiate from the descendents of what normally would be the MS blastomere. The other cells of the four cell stage, ABa, ABp, and P2, did not form gut when placed in contact with the inducer. To determine whether any other inductions are involved in gut specification, timed blastomere isolations were done at the two and eight cell stages. In the absence of cell contact at the two cell stage, segregation of gut fate proceeded normally at both the two and four cell stages. Gut fate also segregated properly in the absence of cell contact at the eight cell stage. A model is presented for the roles of lineage-dependent mechanisms and cell interactions in establishing gut fate in the E lineage.


2019 ◽  
Vol 47 (2) ◽  
pp. 691-700
Author(s):  
Caroline Delandre ◽  
Owen J. Marshall

Abstract The organisation of DNA into differing forms of packaging, or chromatin, controls many of the cell fate decisions during development. Although early studies focused on individual forms of chromatin, in the last decade more holistic studies have attempted to determine a complete picture of the different forms of chromatin present within a cell. In the fruit fly, Drosophila melanogaster, the study of chromatin states has been aided by the use of complementary and cell-type-specific techniques that profile the marks that recruit chromatin protein binding or the proteins themselves. Although many questions remain unanswered, a clearer picture of how different chromatin states affect development is now emerging, with more unusual chromatin states such as Black chromatin playing key roles. Here, we discuss recent findings regarding chromatin biology in flies.


2013 ◽  
Vol 10 (79) ◽  
pp. 20120766 ◽  
Author(s):  
Walter de Back ◽  
Joseph Xu Zhou ◽  
Lutz Brusch

The cell fate decision of multi-potent pancreatic progenitor cells between the exocrine and endocrine lineages is regulated by Notch signalling, mediated by cell–cell interactions. However, canonical models of Notch-mediated lateral inhibition cannot explain the scattered spatial distribution of endocrine cells and the cell-type ratio in the developing pancreas. Based on evidence from acinar-to-islet cell transdifferentiation in vitro , we propose that lateral stabilization, i.e. positive feedback between adjacent progenitor cells, acts in parallel with lateral inhibition to regulate pattern formation in the pancreas. A simple mathematical model of transcriptional regulation and cell–cell interaction reveals the existence of multi-stability of spatial patterns whose simultaneous occurrence causes scattering of endocrine cells in the presence of noise. The scattering pattern allows for control of the endocrine-to-exocrine cell-type ratio by modulation of lateral stabilization strength. These theoretical results suggest a previously unrecognized role for lateral stabilization in lineage specification, spatial patterning and cell-type ratio control in organ development.


2019 ◽  
Author(s):  
Kai Yao ◽  
Nash D. Rochman ◽  
Sean X. Sun

AbstractConvolutional neural networks (ConvNets) have been used for both classification and semantic segmentation of cellular images. Here we establish a method for cell type classification utilizing images taken on a benchtop microscope directly from cell culture flasks eliminating the need for a dedicated imaging platform. Significant flask-to-flask heterogeneity was discovered and overcome to support network generalization to novel data. Cell density was found to be a prominent source of heterogeneity even within the single-cell regime indicating the presence of morphological effects due to diffusion-mediated cell-cell interaction. Expert classification was poor for single-cell images and excellent for multi-cell images suggesting experts rely on the identification of characteristic phenotypes within subsets of each population and not ubiquitous identifiers. Finally we introduce Self-Label Clustering, an unsupervised clustering method relying on ConvNet feature extraction able to identify distinct morphological phenotypes within a cell type, some of which are observed to be cell density dependent.Author summaryK.Y., N.D.R., and S.X.S. designed experiments and computational analysis. K.Y. performed experiments and ConvNets design/training, K.Y., N.D.R and S.X.S wrote the paper.


2018 ◽  
Author(s):  
Yohei Kikuchi ◽  
Akatsuki Kimura

AbstractMicroinjection is a useful method in cell biology, with which exogenous substances are introduced into a cell in a location- and time-specific manner. The Caenorhabditis elegans embryo is an important model system for cell and developmental biology. Applying microinjection to the C. elegans embryo had been difficult due to the rigid eggshell surrounding the embryo. In 2013, microinjection method using a carbon-coated quartz needle for the C. elegans embryo was reported. To prepare the needle, unfortunately, special equipment is required and thus a limited number of researchers can use this method. In this study, we established a method for the microinjection of drugs, dyes, and microbeads into the C. elegans embryo using an uncoated glass needle that can be produced in a general laboratory. This method enabled us to easily detect cell lineage up to adult stages by injecting a fluorescent dye into a blastomere. We also found a cell-non-autonomous control mechanism of cell adhesion; specifically, the injection of an actin inhibitor into one cell at the 2-cell stage enhanced adhesion between daughter cells of the other cell. Our microinjection method is expected to be used for broad studies and could facilitate various discoveries using C. elegans.


2019 ◽  
Author(s):  
Hiraku Miyagi ◽  
Michio Hiroshima ◽  
Yasushi Sako

AbstractGrowth factors regulate cell fates, including their proliferation, differentiation, survival, and death, according to the cell type. Even when the response to a specific growth factor is deterministic for collective cell behavior, significant levels of fluctuation are often observed between single cells. Statistical analyses of single-cell responses provide insights into the mechanism of cell fate decisions but very little is known about the distributions of the internal states of cells responding to growth factors. Using multi-color immunofluorescent staining, we have here detected the phosphorylation of seven elements in the early response of the ERBB–RAS–MAPK system to two growth factors. Among these seven elements, five were analyzed simultaneously in distinct combinations in the same single cells. Although principle component analysis suggested cell-type and input specific phosphorylation patterns, cell-to-cell fluctuation was large. Mutual information analysis suggested that cells use multitrack (bush-like) signal transduction pathways under conditions in which clear cell fate changes have been reported. The clustering of single-cell response patterns indicated that the fate change in a cell population correlates with the large entropy of the response, suggesting a bet-hedging strategy is used in decision making. A comparison of true and randomized datasets further indicated that this large variation is not produced by simple reaction noise, but is defined by the properties of the signal-processing network.Author SummaryHow extracellular signals, such as growth factors (GFs), induce fate changes in biological cells is still not fully understood. Some GFs induce cell proliferation and others induce differentiation by stimulating a common reaction network. Although the response to each GF is reproducible for a cell population, not all single cells respond similarly. The question that arises is whether a certain GF conducts all the responding cells in the same direction during a fate change, or if it initially stimulates a variety of behaviors among single cells, from which the cells that move in the appropriate direction are later selected. Our current statistical analysis of single-cell responses suggests that the latter process, which is called a bet-hedging mechanism is plausible. The complex pathways of signal transmission seem to be responsible for this bet-hedging.


Development ◽  
1991 ◽  
Vol 112 (3) ◽  
pp. 881-890 ◽  
Author(s):  
O. Khaner ◽  
F. Wilt

It has been known from results obtained in the classical experiments on sea urchin embryos that cell isolation and transplantation showed extensive interactions between the early blastomeres and/or their descendants. In the experiments reported here a systematic reexamination of recombination of mesomeres and their progeny (which come from the animal hemisphere) with various vegetal cells derived from blastomeres of the 32- and 64-cell stage was carried out. Cells were marked with lineage tracers to follow which cell gave rise to what structures, and newly available molecular markers have been used to analyze different structures characteristic of regional differentiation. Large micromeres form spicules and induce gut and pigment cells in mesomeres, conforming to previous results. Small micromeres, a cell type not heretofore examined, gave rise to no recognizable structure and had very limited ability to evoke poorly differentiated gut tissue in mesomeres. Macromeres and their descendants, Veg 1 and Veg 2, form primarily what their normal fate dictated, though both did have some capacity to form spicules, presumably by formation from secondary mesenchyme. Macromeres and their descendants were not potent inducers of vegetal structures in animal cells, but they suppress the latent ability of mesomeres to form vegetal structures. The results lead us to propose that the significant interactions during normal development may be principally suppressive effects of mesomeres on one another and of adjacent vegetal cells on mesomeres.


2021 ◽  
Author(s):  
Nathanael Andrews ◽  
Jason T. Serviss ◽  
Natalie Geyer (Karolinska Institute Stockholm) ◽  
Agneta B. Andersson ◽  
Ewa Dzwonkowska ◽  
...  

Single cell sequencing methods facilitate the study of tissues at high resolution, revealing rare cell types with varying transcriptomes or genomes, but so far have been lacking the capacity to investigate cell-cell interactions. Here, we introduce CIM-seq, an unsupervised and high-throughput method to analyze direct physical cell-cell interactions between every cell type in a given tissue. CIM-seq is based on RNA sequencing of incompletely dissociated cells, followed by computational deconvolution of these into their constituent cell types using machine learning. CIM-seq is broadly applicable to studies that aim to simultaneously investigate the constituent cell types and the global interaction profile in a specific tissue.


Sign in / Sign up

Export Citation Format

Share Document