The WNT antagonist cSFRP2 modulates programmed cell death in the developing hindbrain

Development ◽  
2000 ◽  
Vol 127 (24) ◽  
pp. 5285-5295 ◽  
Author(s):  
D.L. Ellies ◽  
V. Church ◽  
P. Francis-West ◽  
A. Lumsden

In the avian hindbrain, the loss of premigratory neural crest cells from rhombomeres 3 and 5 (r3, r5) through programmed cell death contributes to the patterning of emigrant crest cells into three discrete streams. Programmed cell death is induced by the upregulation of Bmp4 and Msx2 in r3 and r5. We show that cSFRP2, a WNT antagonist, is expressed in the even-numbered rhombomeres and that over-expression of cSfrp2 inhibits Bmp4 expression in r3 and r5, preventing programmed cell death. By contrast, depleting cSFRP2 function in r4 results in elevated levels of Msx2 expression and ectopic programmed cell death, as does overexpression of Wnt1. We propose that programmed cell death in the rhombencephalic neural crest is modulated by pre-patterned cSfrp2 expression and a WNT-BMP signalling loop.

PLoS ONE ◽  
2012 ◽  
Vol 7 (1) ◽  
pp. e30097 ◽  
Author(s):  
Lin An ◽  
Xiwen Zhao ◽  
Jian Wu ◽  
Jianguo Jia ◽  
Yunzeng Zou ◽  
...  

10.1038/10098 ◽  
1999 ◽  
Vol 1 (2) ◽  
pp. 125-126 ◽  
Author(s):  
J. Rodriguez-Leon ◽  
R. Merino ◽  
D. Macias ◽  
Y. Gañan ◽  
E. Santesteban ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Jean-François Darrigrand ◽  
Mariana Valente ◽  
Glenda Comai ◽  
Pauline Martinez ◽  
Maxime Petit ◽  
...  

The establishment of separated pulmonary and systemic circulation in vertebrates, via cardiac outflow tract (OFT) septation, is a sensitive developmental process accounting for 10% of all congenital anomalies. Neural Crest Cells (NCC) colonising the heart condensate along the primitive endocardial tube and force its scission into two tubes. Here, we show that NCC aggregation progressively decreases along the OFT distal-proximal axis following a BMP signalling gradient. Dullard, a nuclear phosphatase, tunes the BMP gradient amplitude and prevents NCC premature condensation. Dullard maintains transcriptional programs providing NCC with mesenchymal traits. It attenuates the expression of the aggregation factor Sema3c and conversely promotes that of the epithelial-mesenchymal transition driver Twist1. Altogether, Dullard-mediated fine-tuning of BMP signalling ensures the timed and progressive zipper-like closure of the OFT by the NCC and prevents the formation of a heart carrying the congenital abnormalities defining the tetralogy of Fallot.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 2781-2781
Author(s):  
Nancy S Day ◽  
Evan Shereck ◽  
Janet Ayello ◽  
Catherine McGuinn ◽  
Prakash Satwani ◽  
...  

Abstract Abstract 2781 Background. Umbilical cord blood (UCB) is a viable alternative source of allogeneic hematopoietic stem cells for the treatment of both malignant and non-malignant disease (Cairo et al BBMT 2008). UCB transplantation (UCBT) is known to be associated with decrease severe acute graft-versus-host disease (GvHD) compared to unrelated bone marrow (BM) and peripheral blood (PB) transplantation; however, it is associated with delayed hematopoietic and immune reconstitution (Szabolcs/Cairo et al Seminars in Hematology 2010). NK cells play important roles in both innate and adaptive immunity and are characterized as a CD56+ cell population. NK cell recovery is prompt by 2 months after hematopoietic stem cell transplantation (HSCT), while T-cell (after at least 9 mo HSCT) and B-cell (after 3 to 4 mo HSCT) reconstitutions are gradual and delayed. CD56+dim cells are primarily cytotoxic and make up 90% of PB NK populations (Shereck/Cairo PBC 2007). We previously demonstrated the ability to ex-vivo expand CB MNC into various phenotypes of CD56+dim and CD56+bright NK cells (totally 60%) and NKT cells (40%) with profound in vitro and in vivo cytotoxicity against hematological malignancies (Ayello/Cairo BBMT 2006 & Exp. Hematology 2009). Proteomic studies from our group demonstrated differential protein expression including ↑NKG2A, ↓IP3R type 3, ↓MAPKAPK5, and ↑NOTCH 2 in CB vs PB CD56+dim (Shereck/Cairo, ASH 2007; Shereck/Day/Cairo, ASBMT 2009). Objective. In these studies, we sought to determine the similarity or differences in genetic signatures in CB vs APB CD56+dim NK cells. Methods. CB MNCs were isolated on a ficoll gradient and NK CD56+16+dim cells isolated using a 2-step magnetic activated cell separation (MACS) process via a standard kit (Miltenyi Biotec). Enrichment was at least 94%. Isolated RNA from CB and PB CD56+dim cells were subjected to microarray studies (Affymetrix, U133A_2) as we have previously described (Jiang/Cairo et al J Immunol 2004). Data were analyzed by Agilent GeneSpring and Ingenuity pathway analyses. Welch test were used to perform statistical analysis and fold change of < 1.5 and values of p<0.05 were considered to be significant. Two-color ECL Plex fluorescence Western blotting (WB) was preformed to validate the proteomic data. Protein samples were separated using SDS-PAGE followed by transblotting. WB membranes were then incubated with target and control (GAPDH) primary antibodies. After rinse and wash, the membranes were further incubated with CY5 and CY3 conjugated secondary antibodies. The membranes were scanned with TYPHOON by green (532 laser and 580 filter) and red (633 laser and 670 filter) setting for CY3 and CY5, respectively, and then observed and quantified using ImageQuant. Results. CB vs PB CD56+dim cells significantly altered expressed 796 genes, in which 486 genes were over expressed, at the genomic level including: pro-apoptotic genes: CASP10 (3.1F), TNFSF11 (4.7F), CDC2 (3.0F), BCL2L1 (4.3F), NOTCH2 (1.5F); and cell development: PBX1 (7.6F), IL1RN (5.1F), CD24 (5.3F), CD34 (3.5F), CD55 (2.1F), CCL13 (2.2F). Conversely, there was significant under expression of NF1 (5.1F), MAP2K3 (1.7F), PIK3CD (2.1F), BAX (2.9F), and JUN (2.2F). Our WB results indicate that NOTCH2 (2.4F) and PBX1 (2.2F) proteins are increased in CB vs PB CD56+dim NK cells, consistent with our proteomic results. Conclusion. These results suggest that CB vs PB CD56+dim NK are more prone to undergo programmed cell death (apoptosis) secondary to over expression of numerous pro-apoptotic genes, and may be earlier in development (pro-NK) with over expression of the CD34 gene. Furthermore, decrease CB vs PB NK cytotoxicity maybe in part secondary to increase programmed cell death in particularly increase NOTCH2 at the genomic and proteomic levels. (The first two authors contribute equally.) Disclosures: No relevant conflicts of interest to declare.


2011 ◽  
Vol 300 (1) ◽  
pp. C33-C41 ◽  
Author(s):  
Bryan Heit ◽  
Tony Yeung ◽  
Sergio Grinstein

Electrostatic interactions with negative lipids contribute to the subcellular localization of polycationic proteins. In situ measurements using cytosolic probes of surface charge indicate that normal mitochondria are not noticeably electronegative. However, during apoptosis mitochondria accrue negative charge and acquire the ability to attract cationic proteins, including K-Ras. The marked increase in the surface charge of mitochondria occurs early in apoptosis, preceding depolarization of their inner membrane, cytochrome c release, and flipping of phosphatidylserine across the plasmalemma. Using novel biosensors, we determined that the increased electronegativity of the mitochondria coincided with and was likely attributable to increased exposure of cardiolipin, which is dianionic. Ectopic (over)expression of cardiolipin-binding proteins precluded the increase in surface charge and inhibited apoptosis, implying that mitochondrial exposure of negatively charged lipids is required for progression of programmed cell death.


2014 ◽  
Vol 391 (2) ◽  
pp. 170-181 ◽  
Author(s):  
Fenglei He ◽  
Xuefeng Hu ◽  
Wei Xiong ◽  
Lu Li ◽  
Lisong Lin ◽  
...  

Author(s):  
Claudia Compagnucci ◽  
Kira Martinus ◽  
John Griffin ◽  
Michael J. Depew

Coordination of craniofacial development involves an complex, intricate, genetically controlled and tightly regulated spatiotemporal series of reciprocal inductive and responsive interactions among the embryonic cephalic epithelia (both endodermal and ectodermal) and the cephalic mesenchyme — particularly the cranial neural crest (CNC). The coordinated regulation of these interactions is critical both ontogenetically and evolutionarily, and the clinical importance and mechanistic sensitivity to perturbation of this developmental system is reflected by the fact that one-third of all human congenital malformations affect the head and face. Here, we focus on one element of this elaborate process, apoptotic cell death, and its role in normal and abnormal craniofacial development. We highlight four themes in the temporospatial elaboration of craniofacial apoptosis during development, namely its occurrence at (1) positions of epithelial-epithelial apposition, (2) within intra-epithelial morphogenesis, (3) during epithelial compartmentalization, and (4) with CNC metameric organization. Using the genetic perturbation of Satb2, Pbx1/2, Fgf8, and Foxg1 as exemplars, we examine the role of apoptosis in the elaboration of jaw modules, the evolution and elaboration of the lambdoidal junction, the developmental integration at the mandibular arch hinge, and the control of upper jaw identity, patterning and development. Lastly, we posit that apoptosis uniquely acts during craniofacial development to control patterning cues emanating from core organizing centres.


Development ◽  
2002 ◽  
Vol 129 (4) ◽  
pp. 863-873 ◽  
Author(s):  
Yukinori Endo ◽  
Noriko Osumi ◽  
Yoshio Wakamatsu

Neural crest is induced at the junction of epidermal ectoderm and neural plate by the mutual interaction of these tissues. In previous studies, BMP4 has been shown to pattern the ectodermal tissues, and BMP4 can induce neural crest cells from the neural plate. In this study, we show that epidermally expressed Delta1, which encodes a Notch ligand, is required for the activation and/or maintenance of Bmp4 expression in this tissue, and is thus indirectly required for neural crest induction by BMP4 at the epidermis-neural plate boundary. Notch activation in the epidermis additionally inhibits neural crest formation in this tissue, so that neural crest generation by BMP4 is restricted to the junction.


Development ◽  
2002 ◽  
Vol 129 (19) ◽  
pp. 4647-4660 ◽  
Author(s):  
Amir M. Ashique ◽  
Katherine Fu ◽  
Joy M. Richman

Our expression studies of bone morphogenetic proteins (BMPs) and Noggin (a BMP antagonist) in the embryonic chicken face suggested that BMP signals were important for closure of the upper lip or primary palate. We noted that Noggin expression was restricted to the frontonasal mass epithelium but was reduced at the corners of the frontonasal mass (globular processes) just prior to fusion with the adjacent maxillary prominences. We therefore performed gain- and loss-of-function experiments to determine the role of BMPs in lip formation. Noggin treatment led to reduced proliferation and outgrowth of the frontonasal mass and maxillary prominences and ultimately to the deletion of the maxillary and palatine bones. The temporary block in BMP signalling in the mesenchyme also promoted epithelial survival. Noggin treatment also upregulated expression of endogenous BMPs, therefore we investigated whether increasing BMP levels would lead to the same phenotype. A BMP2 bead was implanted into the globular process and a similar phenotype to that produced by Noggin resulted. However, instead of a decrease in proliferation, defects were caused by increased programmed cell death, first in the epithelium and then in the mesenchyme. Programmed cell death was induced primarily in the lateral frontonasal mass with very little cell death medial to the bead. The asymmetric cell death pattern was correlated with a rapid induction of Noggin in the same embryos, with transcripts complementary to the regions with increased cell death. We have demonstrated a requirement for endogenous BMP in the proliferation of facial mesenchyme and that mesenchymal signals promote either survival or thinning of the epithelium. We furthermore demonstrated in vivo that BMP homeostasis is regulated by increasing expression of ligand or antagonist and that such mechanisms may help to protect the embryo from changes in growth factor levels during development or after exposure to teratogens.


Sign in / Sign up

Export Citation Format

Share Document