The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry

Development ◽  
2000 ◽  
Vol 127 (7) ◽  
pp. 1467-1475 ◽  
Author(s):  
J.L. Watts ◽  
D.G. Morton ◽  
J. Bestman ◽  
K.J. Kemphues

During the first cell cycle of Caenorhabditis elegans embryogenesis, asymmetries are established that are essential for determining the subsequent developmental fates of the daughter cells. The maternally expressed par genes are required for establishing this polarity. The products of several of the par genes have been found to be themselves asymmetrically distributed in the first cell cycle. We have identified the par-4 gene of C. elegans, and find that it encodes a putative serine-threonine kinase with similarity to a human kinase associated with Peutz-Jeghers Syndrome, LKB1 (STK11), and a Xenopus egg and embryo kinase, XEEK1. Several strong par-4 mutant alleles are missense mutations that alter conserved residues within the kinase domain, suggesting that kinase activity is essential for PAR-4 function. We find that the PAR-4 protein is present in the gonads, oocytes and early embryos of C. elegans, and is both cytoplasmically and cortically distributed. The cortical distribution begins at the late 1-cell stage, is more pronounced at the 2- and 4-cell stages and is reduced at late stages of embryonic development. We find no asymmetry in the distribution of PAR-4 protein in C. elegans embryos. The distribution of PAR-4 protein in early embryos is unaffected by mutations in the other par genes.

2019 ◽  
Vol 20 (19) ◽  
pp. 4852 ◽  
Author(s):  
Junjun Wang ◽  
Juanjuan Liu ◽  
Xinmiao Ji ◽  
Xin Zhang

STK16, reported as a Golgi localized serine/threonine kinase, has been shown to participate in multiple cellular processes, including the TGF-β signaling pathway, TGN protein secretion and sorting, as well as cell cycle and Golgi assembly regulation. However, the mechanisms of the regulation of its kinase activity remain underexplored. It was known that STK16 is autophosphorylated at Thr185, Ser197, and Tyr198 of the activation segment in its kinase domain. We found that STK16 localizes to the cell membrane and the Golgi throughout the cell cycle, but mutations in the auto-phosphorylation sites not only alter its subcellular localization but also affect its kinase activity. In particular, the Tyr198 mutation alone significantly reduced the kinase activity of STK16, abolished its Golgi and membrane localization, and affected the cell cycle progression. This study demonstrates that a single site autophosphorylation of STK16 could affect its localization and function, which provides insights into the molecular regulatory mechanism of STK16’s kinase activity.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1641-1654 ◽  
Author(s):  
Hanna Fares ◽  
Iva Greenwald

Abstract Ligands present on neighboring cells activate receptors of the LIN-12/Notch family by inducing a proteolytic cleavage event that releases the intracellular domain. Mutations that appear to eliminate sel-5 activity are able to suppress constitutive activity of lin-12(d) mutations that are point mutations in the extracellular domain of LIN-12, but cannot suppress lin-12(intra), the untethered intracellular domain. These results suggest that sel-5 acts prior to or during ligand-dependent release of the intracellular domain. In addition, sel-5 suppression of lin-12(d) mutations is tissue specific: loss of sel-5 activity can suppress defects in the anchor cell/ventral uterine precursor cell fate decision and a sex myoblast/coelomocyte decision, but cannot suppress defects in two different ventral hypodermal cell fate decisions in hermaphrodites and males. sel-5 encodes at least two proteins, from alternatively spliced mRNAs, that share an amino-terminal region and differ in the carboxy-terminal region. The amino-terminal region contains the hallmarks of a serine/threonine kinase domain, which is most similar to mammalian GAK1 and yeast Pak1p.


Genetics ◽  
2000 ◽  
Vol 155 (4) ◽  
pp. 1701-1709 ◽  
Author(s):  
Jorge Vieira ◽  
Brian Charlesworth

AbstractThe genomic DNA sequence of a 2.4-kb region of the X-linked developmental gene fused was determined in 15 Drosophila virilis strains. One common replacement polymorphism is observed, where a negatively charged aspartic amino acid is replaced by the noncharged amino acid alanine. This replacement variant is located within the serine/threonine kinase domain of the fused gene and is present in ~50% of the sequences in our sample. Significant linkage disequilibrium is detected around this replacement site, although the fused gene is located in a region of the D. virilis X chromosome that seems to experience normal levels of recombination. In a 600-bp region around the replacement site, all eight alanine sequences are identical; of the six aspartic acid sequences, three are also identical. The occurrence of little or no variation within the aspartic acid and alanine haplotypes, coupled with the presence of several differences between them, is very unlikely under the usual equilibrium neutral model. Our results suggest that the fused alanine haplotypes have recently increased in frequency in the D. virilis population.


Development ◽  
1990 ◽  
Vol 108 (1) ◽  
pp. 159-172 ◽  
Author(s):  
D.P. Hill ◽  
S. Strome

We are investigating the involvement of the microfilament cytoskeleton in the development of early Caenorhabditis elegans embryos. We previously reported that several cytoplasmic movements in the zygote require that the microfilament cytoskeleton remain intact during a narrow time interval approximately three-quarters of the way through the first cell cycle. In this study, we analyze the developmental consequences of brief, cytochalasin D-induced microfilament disruption during the 1-cell stage. Our results indicate that during the first cell cycle microfilaments are important only during the critical time interval for the 2-cell embryo to undergo the correct pattern of subsequent divisions and to initiate the differentiation of at least 4 tissue types. Disruption of microfilaments during the critical interval results in aberrant division and P-granule segregation patterns, generating some embryos that we classify as ‘reverse polarity’, ‘anterior duplication’, and ‘posterior duplication’ embryos. These altered patterns suggest that microfilament disruption during the critical interval leads to the incorrect distribution of developmental instructions responsible for early pattern formation. The strict correlation between unequal division, unequal germ-granule partitioning, and the generation of daughter cells with different cell cycle periods observed in these embryos suggests that the three processes are coupled. We hypothesize that (1) an ‘asymmetry determinant’, normally located at the posterior end of the zygote, governs asymmetric cell division, germ-granule segregation, and the segregation of cell cycle timing elements during the first cell cycle, and (2) the integrity or placement of this asymmetry determinant is sensitive to microfilament disruption during the critical time interval.


1994 ◽  
Vol 5 (3) ◽  
pp. 273-282 ◽  
Author(s):  
S Kornbluth ◽  
B Sebastian ◽  
T Hunter ◽  
J Newport

The key regulator of entry into mitosis is the serine/threonine kinase p34cdc2. This kinase is regulated both by association with cyclins and by phosphorylation at several sites. Phosphorylation at Tyr 15 and Thr 14 are believed to inhibit the kinase activity of cdc2. In Schizosaccharomyces pombe, the wee1 (and possibly mik1) protein kinase catalyzes phosphorylation of Tyr 15. It is not clear whether these or other, as yet unidentified, protein kinases phosphorylate Thr 14. In this report we show, using extracts of Xenopus eggs, that the Thr 14-directed kinase is tightly membrane associated. Specifically, we have shown that a purified membrane fraction, in the absence of cytoplasm, can promote phosphorylation of cdc2 on both Thr 14 and Tyr 15. In contrast, the cytoplasm can phosphorylate cdc2 only on Tyr 15, suggesting the existence of at least two distinctly localized subpopulations of cdc2 Tyr 15-directed kinases. The membrane-associated Tyr 15 and Thr 14 kinase activities behaved similarly during salt or detergent extraction and were similarly regulated during the cell cycle and by the checkpoint machinery that delays mitosis while DNA is being replicated. This suggests the possibility that a dual-specificity membrane-associated protein kinase may catalyze phosphorylation of both Tyr 15 and Thr 14.


2020 ◽  
Vol 21 (11) ◽  
pp. 4122 ◽  
Author(s):  
Miao Yu ◽  
Xiaoyan Shi ◽  
Mengmeng Ren ◽  
Lu Liu ◽  
Hao Qi ◽  
...  

Serine-threonine kinase receptor-associated protein (STRAP) functions as a regulator of both TGF-β and p53 signaling that participates in the regulation of cell proliferation and cell death in response to various stresses. Here, we demonstrate that STRAP acetylation plays an important role in p53-mediated cell cycle arrest and apoptosis. STRAP is acetylated at lysines 147, 148, and 156 by the acetyltransferases CREB-binding protein (CBP) and that the acetylation is reversed by the deacetylase sirtuin7 (SIRT7). Hypo- or hyperacetylation mutations of STRAP at lysines 147, 148, and 156 (3KR or 3KQ) influence its activation and stabilization of p53. Moreover, following 5-fluorouracil (5-FU) treatment, STRAP is mobilized from the cytoplasm to the nucleus and promotes STRAP acetylation. Our finding on the regulation of STRAP links p53 with SIRT7 influencing p53 activity and stability.


2000 ◽  
Vol 11 (9) ◽  
pp. 3177-3190 ◽  
Author(s):  
Jennifer A. Zallen ◽  
Erin L. Peckol ◽  
David M. Tobin ◽  
Cornelia I. Bargmann

The Caenorhabditis elegans sax-1 gene regulates several aspects of neuronal cell shape. sax-1 mutants have expanded cell bodies and ectopic neurites in many classes of neurons, suggesting that SAX-1 functions to restrict cell and neurite growth. The ectopic neurites in sensory neurons of sax-1mutants resemble the defects caused by decreased sensory activity. However, the activity-dependent pathway, mediated in part by the UNC-43 calcium/calmodulin-dependent kinase II, functions in parallel with SAX-1 to suppress neurite initiation. sax-1 encodes a serine/threonine kinase in the Ndr family that is related to the Orb6 (Schizosaccharomyces pombe), Warts/Lats (Drosophila), and COT-1 (Neurospora) kinases that function in cell shape regulation. These kinases have similarity to Rho kinases but lack consensus Rho-binding domains. Dominant negative mutations in the C. elegans RhoA GTPase cause neuronal cell shape defects similar to those ofsax-1 mutants, and genetic interactions betweenrhoA and sax-1 suggest shared functions. These results suggest that SAX-1/Ndr kinases are endogenous inhibitors of neurite initiation and cell spreading.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1832-1832
Author(s):  
Karthika Natarajan ◽  
Mehmet Burcu ◽  
Maria R. Baer

Abstract Abstract 1832 Poster Board I-812 The serine/threonine kinase Pim-1, encoded by a proto-oncogene originally identified as the proviral integration site in Moloney murine leukemia virus lymphomagenesis, phosphorylates and thereby increases expression of multiple cellular proteins, including the pro-apoptotic protein BAD, the cell cycle regulatory proteins p21, p27, Cdc25A and Cdc25C, the transcription factors SOCS-1, RUNX3 and c-myc and, as we recently demonstrated, the drug resistance-associated ATP-binding cassette (ABC) proteins P-glycoprotein (Pgp, ABCB1) and breast cancer resistance protein (BCRP, ABCG2). Pim-1 is synthesized in an active form by virtue of its hinge structure, and its activity is therefore regulated solely by its level of expression. Pim-1 is overexpressed downstream of FLT3 in AML cells with FLT3-ITD, but less is known about its expression and role in AML with wild-type (wt) FLT3. We studied Pim-1 expression and the effects of Pim-1 inhibition on AML cell survival, proliferation, apoptosis and chemosensitivity. Cell lines studied included HL60, K562, U937, Kasumi-1 and EOL-1 FLT3-wt cells and MV4-11 and MOLM-14 FLT3-ITD cells, as well as Pgp+ HL60/VCR and BCRP+ 8226/MR20 and parental 8226 myeloma cells as a model for BCRP-mediated drug resistance. Expression of Pim-1 and of phospho-BAD at S112, a measure of Pim-1 activity, was studied by Western blot analysis, normalized to GAPDH expression. Effects of the Pim-1 inhibitor SGI-1776 (SuperGen, Inc., Dublin, CA) on survival, cell cycle, apoptosis and colony growth were measured in WST-1 cell survival, flow cytometric cell cycle and apoptosis, and methylcellulose colony formation assays, respectively. SGI-1776 inhibits Pim-1 at a concentration of 7 +/− 1.8 nM, but is more than 90% bound to human plasma protein, so that its Pim-1 inhibitory concentration in cell culture-based assays is in μM range. Of note, SGI-1776 also inhibits FLT3 in this concentration range. Pim-1 was expressed in all cell lines studied, and expression of Pim-1 and of phopho-BAD did not differ between FLT3-ITD and FLT3-wt cells, nor between drug-resistant and parental cells. SGI-1776 decreased viable cell numbers in 96-hour WST-1 cell viability assays, with IC50's of 5 to 7 μM in FLT-wt cells, while IC50's were 20 and 65 nM, respectively, in MV4-11 and MOLM-14 FLT3-ITD cells. SGI-1776 IC50's did not differ between Pgp+ or BCRP+ cells and parental cells. In FLT3-wt cells, SGI-1776 had no effect on cell cycle at concentrations up to 5 μM, and caused apoptosis at 10 μM, while in FLT3-ITD cells, G1 arrest and apoptosis occurred at 100 nM. HL60 colony formation was completely inhibited by 5 μM SGI-1776, while MOLM-14 colony formation inhibition occurred at 500 nM. Finally, SGI-1776 sensitized multidrug resistant, but not parental, cells to multidrug resistance protein substrate, but not non-substrate, drugs. SGI-1776 at 1 μM decreased the IC50 of the Pgp substrate chemotherapy drug daunorubicin in Pgp+ HL60/VCR cells 7-fold, but had no effect on daunorubicin IC50 in HL60 cells, nor on IC50 of the non-Pgp substrate cytarabine in either cell line. SGI-1776 at 1 μM also decreased the IC50 of the BCRP substrate chemotherapy drug mitoxantrone in BCRP+ 8226/MR20 cells 7-fold. SGI-1776 at 1 μM doubled the percentage of apoptotic cells among HL60/VCR, but not HL60, cells exposed to daunorubicin and 8226/MR20 cells exposed to mitoxantrone. Finally, SGI-1776 at 1 μM decreased HL60/VCR colony formation in the presence of daunorubicin, but not cytarabine, but had no effect in HL60 cells, and also decreased 8226/MR20 colony formation in the presence of mitoxantrone, but not cytarabine. Thus the Pim-1 inhibitor SGI-1776 has anti-proliferative effects in AML cells with wt FLT3 as well FLT3-ITD, and sensitizes Pgp+ and BCRP+ multidrug resistant cells to chemotherapy. These data support clinical trials of SGI-1776 in AML with wt FLT3 as well FLT3-ITD, as a single agent and in combination with chemotherapy in multidrug resistant AML. Disclosures: No relevant conflicts of interest to declare.


Nature ◽  
10.1038/34432 ◽  
1998 ◽  
Vol 391 (6663) ◽  
pp. 184-187 ◽  
Author(s):  
Akseli Hemminki ◽  
David Markie ◽  
Ian Tomlinson ◽  
Egle Avizienyte ◽  
Stina Roth ◽  
...  

mSphere ◽  
2021 ◽  
Author(s):  
N. Plaza ◽  
I. M. Urrutia ◽  
K. Garcia ◽  
M. K. Waldor ◽  
C. J. Blondel

Vibrio parahaemolyticus is the leading bacterial cause of seafood-borne gastroenteritis worldwide. The pathogen relies on a type III secretion system to deliver a variety of effector proteins into the cytosol of infected cells to subvert cellular function.


Sign in / Sign up

Export Citation Format

Share Document