Developmentally distinct MYB genes encode functionally equivalent proteins in Arabidopsis

Development ◽  
2001 ◽  
Vol 128 (9) ◽  
pp. 1539-1546 ◽  
Author(s):  
M.M. Lee ◽  
J. Schiefelbein

The duplication and divergence of developmental control genes is thought to have driven morphological diversification during the evolution of multicellular organisms. To examine the molecular basis of this process, we analyzed the functional relationship between two paralogous MYB transcription factor genes, WEREWOLF (WER) and GLABROUS1 (GL1), in Arabidopsis. The WER and GL1 genes specify distinct cell types and exhibit non-overlapping expression patterns during Arabidopsis development. Nevertheless, reciprocal complementation experiments with a series of gene fusions showed that WER and GL1 encode functionally equivalent proteins, and their unique roles in plant development are entirely due to differences in their cis-regulatory sequences. Similar experiments with a distantly related MYB gene (MYB2) showed that its product cannot functionally substitute for WER or GL1. Furthermore, an analysis of the WER and GL1 proteins shows that conserved sequences correspond to specific functional domains. These results provide new insights into the evolution of the MYB gene family in Arabidopsis, and, more generally, they demonstrate that novel developmental gene function may arise solely by the modification of cis-regulatory sequences.

Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 89-98 ◽  
Author(s):  
P. Gonczy ◽  
S. Viswanathan ◽  
S. DiNardo

Formation of motile sperm in Drosophila melanogaster requires the coordination of processes such as stem cell division, mitotic and meiotic control and structural reorganization of a cell. Proper execution of spermatogenesis entails the differentiation of cells derived from two distinct embryonic lineages, the germ line and the somatic mesoderm. Through an analysis of homozygous viable and fertile enhancer detector lines, we have identified molecular markers for the different cell types present in testes. Some lines label germ cells or somatic cyst cells in a stage-specific manner during their differentiation program. These expression patterns reveal transient identities for the cyst cells that had not been previously recognized by morphological criteria. A marker line labels early stages of male but not female germ cell differentiation and proves useful in the analysis of germ line sex-determination. Other lines label the hub of somatic cells around which germ line stem cells are anchored. By analyzing the fate of the somatic hub in an agametic background, we show that the germ line plays some role in directing its size and its position in the testis. We also describe how marker lines enable us to identify presumptive cells in the embryonic gonadal mesoderm before they give rise to morphologically distinct cell types. Finally, this collection of marker lines will allow the characterization of genes expressed either in the germ line or in the soma during spermatogenesis.


Development ◽  
1989 ◽  
Vol 107 (2) ◽  
pp. 189-200 ◽  
Author(s):  
U. Grossniklaus ◽  
H.J. Bellen ◽  
C. Wilson ◽  
W.J. Gehring

We have stained the ovaries of nearly 600 different Drosophila strains carrying single copies of a P-element enhancer detector. This transposon detects neighbouring genomic transcriptional regulatory sequences by means of a beta-galactosidase reporter gene. Numerous strains are stained in specific cells and at specific stages of oogenesis and provide useful ovarian markers for cell types that in some cases have not previously been recognized by morphological criteria. Since recent data have suggested that a substantial number of the regulatory elements detected by enhancer detection control neighbouring genes, we discuss the implications of our results concerning ovarian gene expression patterns in Drosophila. We have also identified a small number of insertion-linked recessive mutants that are sterile or lead to ovarian defects. We observe a strong correlation with specific germ line staining patterns in these strains, suggesting that certain patterns are more likely to be associated with female sterile genes than others. On the basis of our results, we suggest new strategies, which are not primarily based on the generation of mutants, to screen for and isolated female sterile genes.


2021 ◽  
Vol 1 (19) ◽  
pp. 205-206
Author(s):  
I.V. Pinskiy

The characteristics of various miRNA binding sites in the mRNAs of the MYB transcription factor genes of Arabidopsis thaliana, Glycine max and Vitis vinifera have been established. The most conserved miRNA binding sites were the binding sites of the miR828 family.


Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 413
Author(s):  
Lin Tan ◽  
Usman Ijaz ◽  
Haron Salih ◽  
Zhihao Cheng ◽  
Nwe Ni Win Htet ◽  
...  

MYB transcription factors (TFs) make up one of the most important TF families in plants. These proteins play crucial roles in processes related to development, metabolism, and stimulus-response; however, very few studies have been reported for the characterization of MYB TFs from banana. The current study identified 305 and 251 MYB genes from Musa acuminata and Musa balbisiana, respectively. Comprehensive details of MYBs are reported in terms of gene structure, protein domain, chromosomal localization, phylogeny, and expression patterns. Based on the exon–intron arrangement, these genes were classified into 12 gene models. Phylogenetic analysis of MYBs involving both species of banana, Oryza sativa, and Arabidopsis thaliana distributed these genes into 27 subfamilies. This highlighted not only the conservation, but also the gain/loss of MYBs in banana. Such genes are important candidates for future functional investigations. The MYB genes in both species exhibited a random distribution on chromosomes with variable densities. Estimation of gene duplication events revealed that segmental duplications represented the major factor behind MYB gene family expansion in banana. Expression profiles of MYB genes were also explored for their potential involvement in acetylene response or development. Collectively, the current comprehensive analysis of MYB genes in both species of banana will facilitate future functional studies.


2014 ◽  
Vol 35 (5) ◽  
pp. 770-777 ◽  
Author(s):  
Sharon Schlesinger ◽  
Stephen P. Goff

Retroviruses have evolved complex transcriptional enhancers and promoters that allow their replication in a wide range of tissue and cell types. Embryonic stem (ES) cells, however, characteristically suppress transcription of proviruses formed after infection by exogenous retroviruses and also of most members of the vast array of endogenous retroviruses in the genome. These cells have unusual profiles of transcribed genes and are poised to make rapid changes in those profiles upon induction of differentiation. Many of the transcription factors in ES cells control both host and retroviral genes coordinately, such that retroviral expression patterns can serve as markers of ES cell pluripotency. This overlap is not coincidental; retrovirus-derived regulatory sequences are often used to control cellular genes important for pluripotency. These sequences specify the temporal control and perhaps “noisy” control of cellular genes that direct proper cell gene expression in primitive cells and their differentiating progeny. The evidence suggests that the viral elements have been domesticated for host needs, reflecting the wide-ranging exploitation of any and all available DNA sequences in assembling regulatory networks.


2017 ◽  
Author(s):  
Heather Dionne ◽  
Karen L. Hibbard ◽  
Amanda Cavallaro ◽  
Jui-Chun Kao ◽  
Gerald M. Rubin

AbstractThe ability to reproducibly target expression of transgenes to small, defined subsets of cells is a key experimental tool for understanding many biological processes. The Drosophila nervous system contains thousands of distinct cell types and it has generally not been possible to limit expression to one or a few cell types when using a single segment of genomic DNA as an enhancer to drive expression. Intersectional methods, in which expression of the transgene only occurs where two different enhancers overlap in their expression patterns, can be used to achieve the desired specificity. This report describes a set of over 2,800 transgenic lines for use with the split-GAL4 intersectional method.


Genes ◽  
2019 ◽  
Vol 10 (10) ◽  
pp. 823 ◽  
Author(s):  
Yu Han ◽  
Jiayao Yu ◽  
Tao Zhao ◽  
Tangren Cheng ◽  
Jia Wang ◽  
...  

Rosa chinensis, an important ancestor species of Rosa hybrida, the most popular ornamental plant species worldwide, produces flowers with diverse colors and fragrances. The R2R3-MYB transcription factor family controls a wide variety of plant-specific metabolic processes, especially phenylpropanoid metabolism. Despite their importance for the ornamental value of flowers, the evolution of R2R3-MYB genes in plants has not been comprehensively characterized. In this study, 121 predicted R2R3-MYB gene sequences were identified in the rose genome. Additionally, a phylogenomic synteny network (synnet) was applied for the R2R3-MYB gene families in 35 complete plant genomes. We also analyzed the R2R3-MYB genes regarding their genomic locations, Ka/Ks ratio, encoded conserved motifs, and spatiotemporal expression. Our results indicated that R2R3-MYBs have multiple synteny clusters. The RcMYB114a gene was included in the Rosaceae-specific Cluster 54, with independent evolutionary patterns. On the basis of these results and an analysis of RcMYB114a-overexpressing tobacco leaf samples, we predicted that RcMYB114a functions in the phenylpropanoid pathway. We clarified the relationship between R2R3-MYB gene evolution and function from a new perspective. Our study data may be relevant for elucidating the regulation of floral metabolism in roses at the transcript level.


2021 ◽  
Author(s):  
Irfan Ali Sabir ◽  
Muhammad Aamir Manzoor ◽  
Iftikhar Hussain Shah ◽  
Xunju Liu ◽  
Muhmmad Salman Zahid ◽  
...  

Abstract Back groundMYB Transcription factors (TFs) are most imperative and largest gene family in plants, which participate in development, metabolism, defense, differentiation and stress response. The MYB TFs has been studied in various plant species. However, comprehensive studies of MYB gene family in the sweet cherry (Prunus avium L.) are still unknown. ResultsIn the current study, a total of 69 MYB genes were investigated from sweet cherry genome and classified into 28 subfamilies (C1-C28 based on phylogenetic and structural analysis). Microcollinearity analysis revealed that dispersed duplication (DSD) and whole-genome duplication (WGD) events might play an important role in the expansion of the MYB genes family. Chromosomal localization, the synonymous (Ks) and nonsynonymous (Ka) analysis, molecular characteristics (pI, weight and length of amino acids) and subcellular localization were accomplished using several bioinformatics tools. Moreover, different subfamilies contained different cis-acting elements, conserved motifs analysis and introns-exons structures, representing functional divergence in the MYB family. Subsequently, the transcriptomic data exposed that MYB genes might play vital role in bud dormancy. Subsequently, the quantitative real-time qRT-PCR was carried out and the expression pattern indicated that MYB genes significantly expressed in floral bud as compared to flower and fruit. ConclusionOur comprehensive findings provide supportive insights into the evolutions, expansion complexity and functionality of PavMYB genes. These PavMYB genes should be further investigated as they seem to be brilliant candidates for dormancy manipulation in sweet cherry.


2021 ◽  
Author(s):  
Zhongpeng Li ◽  
Kyaw Aung

AbstractPrecise exchange of information and resources among cells is essential for multicellular organisms. Intercellular communication among diverse cell types requires differential mechanisms to achieve the specific regulation. Despite the significance of intercellular communication, it is largely unknown how the communication between different cells is regulated. Here, we report that two members of plasmodesmata-located proteins modulate plasmodesmata at two distinct cell-cell interfaces.


2020 ◽  
Author(s):  
Hong Liu ◽  
Guoyun Zhang ◽  
Zhongrui Lv ◽  
Songfeng Diao ◽  
Caiyun He ◽  
...  

Abstract Background MYB transcription factor family involved in multifarious stages of plant growth and development until death, which is one of the largest and most versatile gene families in plants, therefore it is an important regulatory factor in plants. Sea buckthorn (Hippophae rhamnoides L.) is rich in many secondary metabolites and has high nutritional and medicinal value. With the completion of sea buckthorn genome sequencing, it has laid the foundation for us to explore the gene structure, evolutionary relationship and function prediction of sea buckthorn MYB gene family from the whole genome perspective. Results In this study, 161 R2R3-MYB genes were identified from the sea buckthorn genome. We systematically analyzed their gene structure, collinearity, phylogenetic relationships and expression pattern. According to the gene structure, conserved motifs and phylogenetic relationship of 161 HrMYB genes, all the HrMYB genes were divided into 28 subgroups. The phylogenetic tree of Hippophae rhamnoides L. and Arabidopsis thaliana R2R3-MYB genes showed that the sea buckthorn MYB gene family showed functional differentiation during evolution. Chromosomal localization results showed that the distribution of HrMYB genes were random. RNA-seq data from seven different tissues indicated that the HrMYB genes have significant spatiotemporal and tissue expression differences. QRT-PCR analysis showed that the selected genes which relate to flavonoid biosynthesis of sea buckthorn fruit expressed different degrees in different developmental stages of the fruit. Conclusion The sea buckthorn R2R3-MYB gene family was successfully identified from the whole genome sequence by a series of bioinformatics methods. The results firstly provide a more comprehensive insight for the phylogenetic relationships and expression patterns of the HrMYB genes. It will help us to further study their specific functions in the growth and development of sea buckthorn.


Sign in / Sign up

Export Citation Format

Share Document