Multiple functions of a Zic-like gene in the differentiation of notochord, central nervous system and muscle inCiona savignyiembryos
Multiple functions of a Zic-like zinc finger transcription factor gene (Cs-ZicL) were identified in Ciona savignyi embryos. cDNA clones for Cs-ZicL, a β-catenin downstream genes, were isolated and the gene was transiently expressed in the A-line notochord/nerve cord lineage and in B-line muscle lineage from the 32-cell stage and later in a-line CNS lineage from the 110-cell stage. Suppression of Cs-ZicL function with specific morpholino oligonucleotide indicated that Cs-ZicL is essential for the formation of A-line notochord cells but not of B-line notochord cells, essential for the CNS formation and essential for the maintenance of muscle differentiation. The expression of Cs-ZicL in the A-line cells is downstream of β-catenin and a β-catenin-target gene, Cs-FoxD, which is expressed in the endoderm cells from the 16-cell stage and is essential for the differentiation of notochord. In spite of its pivotal role in muscle specification, the expression of Cs-ZicL in the muscle precursors is independent of Cs-macho1, which is another Zic-like gene encoding a Ciona maternal muscle determinant, suggesting another genetic cascade for muscle specification independent of Cs-macho1. Cs-ZicL may provide a future experimental system to explore how the gene expression in multiple embryonic regions is controlled and how the single gene can perform different functions in multiple types of embryonic cells.