Microbial influences on gut development and gut-brain communication

Development ◽  
2021 ◽  
Vol 148 (21) ◽  
Author(s):  
Lihua Ye ◽  
John F. Rawls

ABSTRACT The developmental programs that build and sustain animal forms also encode the capacity to sense and adapt to the microbial world within which they evolved. This is abundantly apparent in the development of the digestive tract, which typically harbors the densest microbial communities of the body. Here, we review studies in human, mouse, zebrafish and Drosophila that are revealing how the microbiota impacts the development of the gut and its communication with the nervous system, highlighting important implications for human and animal health.

ILAR Journal ◽  
2019 ◽  
Vol 60 (2) ◽  
pp. 289-297 ◽  
Author(s):  
Craig L Franklin ◽  
Aaron C Ericsson

Abstract Our bodies and those of our animal research subjects are colonized by bacterial communities that occupy virtually every organ system, including many previously considered sterile. These bacteria reside as complex communities that are collectively referred to as microbiota. Prior to the turn of the century, characterization of these communities was limited by a reliance on culture of organisms on a battery of selective media. It was recognized that the vast majority of microbes, especially those occupying unique niches of the body such as the anaerobic environment of the intestinal tract, were uncultivatable. However, with the onset and advancement of next-generation sequencing technology, we are now capable of characterizing these complex communities without the need to cultivate, and this has resulted in an explosion of information and new challenges in interpreting data generated about, and in the context of, these complex communities. We have long known that these microbial communities often exist in an intricate balance that, if disrupted (ie, dysbiosis), can lead to disease or increased susceptibility to disease. Because of many functional redundancies, the makeup of these colonies can vary dramatically within healthy individuals [1]. However, there is growing evidence that subtle differences can alter the phenotype of various animal models, which may translate to the varying susceptibility to disease seen in the human population. In this manuscript, we discuss how to include complex microbiota as a consideration in experimental design and model reproducibility and how to exploit the extensive variation that exists in contemporary rodent research colonies. Our focus will be the intestinal or gut microbiota (GM), but it should be recognized that microbial communities exist in many other body compartments and these too likely influence health and disease [2, 3]. Much like host genetics, can we one day harness the vast genetic capacity of the microbes we live with in ways that will benefit human and animal health?


2021 ◽  
Vol 140 (1) ◽  
Author(s):  
Christian Klug ◽  
Alexander Pohle ◽  
Rosemarie Roth ◽  
René Hoffmann ◽  
Ryoji Wani ◽  
...  

AbstractNautilid, coleoid and ammonite cephalopods preserving jaws and soft tissue remains are moderately common in the extremely fossiliferous Konservat-Lagerstätte of the Hadjoula, Haqel and Sahel Aalma region, Lebanon. We assume that hundreds of cephalopod fossils from this region with soft-tissues lie in collections worldwide. Here, we describe two specimens of Syrionautilus libanoticus (Cymatoceratidae, Nautilida, Cephalopoda) from the Cenomanian of Hadjoula. Both specimens preserve soft parts, but only one shows an imprint of the conch. The specimen without conch displays a lot of anatomical detail. We homologise the fossilised structures as remains of the digestive tract, the central nervous system, the eyes, and the mantle. Small phosphatic structures in the middle of the body chamber of the specimen with conch are tentatively interpreted as renal concrements (uroliths). The absence of any trace of arms and the hood of the specimen lacking its conch is tentatively interpreted as an indication that this is another leftover fall (pabulite), where a predator lost parts of its prey. Other interpretations such as incomplete scavenging are also conceivable.


Author(s):  
Wiktor Djaczenko ◽  
Carmen Calenda Cimmino

The simplicity of the developing nervous system of oligochaetes makes of it an excellent model for the study of the relationships between glia and neurons. In the present communication we describe the relationships between glia and neurons in the early periods of post-embryonic development in some species of oligochaetes.Tubifex tubifex (Mull. ) and Octolasium complanatum (Dugès) specimens starting from 0. 3 mm of body length were collected from laboratory cultures divided into three groups each group fixed separately by one of the following methods: (a) 4% glutaraldehyde and 1% acrolein fixation followed by osmium tetroxide, (b) TAPO technique, (c) ruthenium red method.Our observations concern the early period of the postembryonic development of the nervous system in oligochaetes. During this period neurons occupy fixed positions in the body the only observable change being the increase in volume of their perikaryons. Perikaryons of glial cells were located at some distance from neurons. Long cytoplasmic processes of glial cells tended to approach the neurons. The superimposed contours of glial cell processes designed from electron micrographs, taken at the same magnification, typical for five successive growth stages of the nervous system of Octolasium complanatum are shown in Fig. 1. Neuron is designed symbolically to facilitate the understanding of the kinetics of the growth process.


Author(s):  
F. L. Azizova ◽  
U. A. Boltaboev

The features of production factors established at the main workplaces of shoe production are considered. The materials on the results of the study of the functional state of the central nervous system of women workers of shoe production in the dynamics of the working day are presented. The level of functional state of the central nervous system was determined by the speed of visual and auditory-motor reactions, installed using the universal device chronoreflexometer. It was revealed that in the body of workers of shoe production there is an early development of inhibitory processes in the central nervous system, which is expressed in an increase in the number of errors when performing tasks on proofreading tables. It was found that the most pronounced shift s in auditory-motor responses were observed in professional groups, where higher levels of noise were registered in the workplace. The correlation analysis showed a close direct relationship between the growth of mistakes made in the market and the decrease in production. An increase in the time spent on the task indicates the occurrence and growth of production fatigue.Funding. The study had no funding.Conflict of interests. The authors declare no conflict of interests.


Author(s):  
Natalya L. Yakimova ◽  
Vladimir A. Pankov ◽  
Aleksandr V. Lizarev ◽  
Viktor S. Rukavishnikov ◽  
Marina V. Kuleshova ◽  
...  

Introduction. Vibration disease continues to occupy one of the leading places in the structure of professional pathology. In workers after the termination of contact with vibration generalization and progression of violations in an organism is noted. The pathogenetic mechanisms of the progredient course of disturbances in the nervous system in the post-contact period of vibration exposure remain insufficiently studied.The aim of the study was to test an experimental model of vibration exposure to assess the neurophysiological and morphological effects of vibration in rats in the dynamics of the post-contact period.Materials and methods. The work was performed on 168 white male outbred rats aged 3 months weighing 180–260 g. The vibration effect was carried out on a 40 Hz vibrating table for 60 days 5 times a week for 4 hours a day. Examination of animals was performed after the end of the physical factor, on the 30th, 60th and 120th day of the post-contact period. To assess the long-term neurophysiological and morphofunctional effects of vibration in rats, we used indicators of behavioral reactions, bioelectric activity of the somatosensory zone of the cerebral cortex, somatosensory and visual evoked potentials, parameters of muscle response, morphological parameters of nervous tissue.Results. In the dynamics of the post-contact period observed the preservation of violations of tentatively research, motor and emotional components of behavior. In the Central nervous system instability of activity of rhythms of an electroencephalogram, decrease in amplitude of visual evoked potentials, lengthening of latency of somatosensory evoked potentials, decrease in total number of normal neurons and astroglia is established. In the peripheral nervous system remained changes in indicators: increasing duration and latency, reducing the amplitude of the neuromuscular response.Conclusions: The experimental model allows us to study the long-term neurophysiological and morphological effects of vibration on the body. The formation and preservation of changes in behavioral activity, neurophysiological and morphological effects of vibration from the 30th to the 120th day of the post-contact period were confirmed.


2018 ◽  
Author(s):  
Pedro Silva Moreira ◽  
Pedro Chaves ◽  
Nuno Dias ◽  
Patrício Costa ◽  
Pedro Rocha Almeida

Background: The search for autonomic correlates of emotional processing has been a matter of interest for the scientific community with the goal of identifying the physiological basis of emotion. Despite an extensive state-of-the-art exploring the correlates of emotion, there is no absolute consensus regarding how the body processes an affective state.Objectives: In this work, we aimed to aggregate the literature of psychophysiological studies in the context of emotional induction. Methods: For this purpose, we conducted a systematic review of the literature and a meta-analytic investigation, comparing different measures from the electrodermal, cardiovascular, respiratory and facial systems across emotional categories/dimensions. Two-hundred and ninety-one studies met the inclusion criteria and were quantitatively pooled in random-effects meta-analytic modelling. Results: Heart rate and skin conductance level were the most reported psychophysiological measures. Overall, there was a negligible differentiation between emotional categories with respect to the pooled estimates. Of note, considerable amount of between-studies’ heterogeneity was found in the meta-analytic aggregation. Self-reported ratings of emotional arousal were found to be associated with specific autonomic-nervous system (ANS) indices, particularly with the variation of the skin conductance level. Conclusions: Despite this clear association, there is still a considerable amount of unexplained variability that raises the need for more fine-grained analysis to be implemented in future research in this field.


Author(s):  
Prithiv K R Kumar

Stem cells have the capacity to differentiate into any type of cell or organ. Stems cell originate from any part of the body, including the brain. Brain cells or rather neural stem cells have the capacitive advantage of differentiating into the central nervous system leading to the formation of neurons and glial cells. Neural stem cells should have a source by editing DNA, or by mixings chemical enzymes of iPSCs. By this method, a limitless number of neuron stem cells can be obtained. Increase in supply of NSCs help in repairing glial cells which in-turn heal the central nervous system. Generally, brain injuries cause motor and sensory deficits leading to stroke. With all trials from novel therapeutic methods to enhanced rehabilitation time, the economy and quality of life is suppressed. Only PSCs have proven effective for grafting cells into NSCs. Neurons derived from stem cells is the only challenge that limits in-vitro usage in the near future.


2019 ◽  
Vol 25 (26) ◽  
pp. 2892-2905 ◽  
Author(s):  
Sumit Jamwal ◽  
Ashish Mittal ◽  
Puneet Kumar ◽  
Dana M. Alhayani ◽  
Amal Al-Aboudi

Adenosine is a naturally occurring nucleoside and an essential component of the energy production and utilization systems of the body. Adenosine is formed by the degradation of adenosine-triphosphate (ATP) during energy-consuming processes. Adenosine regulates numerous physiological processes through activation of four subtypes of G-protein coupled membrane receptors viz. A1, A2A, A2B and A3. Its physiological importance depends on the affinity of these receptors and the extracellular concentrations reached. ATP acts as a neurotransmitter in both peripheral and central nervous systems. In the peripheral nervous system, ATP is involved in chemical transmission in sensory and autonomic ganglia, whereas in central nervous system, ATP, released from synaptic terminals, induces fast excitatory postsynaptic currents. ATP provides the energetics for all muscle movements, heart beats, nerve signals and chemical reactions inside the body. Adenosine has been traditionally considered an inhibitor of neuronal activity and a regulator of cerebral blood flow. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosinerelated drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases. This review will summarize the therapeutic potential and recent SAR and pharmacology of adenosine and its receptor agonists and antagonists.


Parasitology ◽  
1941 ◽  
Vol 33 (4) ◽  
pp. 373-389 ◽  
Author(s):  
Gwendolen Rees

1. The structure of the proboscides of the larva of Dibothriorhynchus grossum (Rud.) is described. Each proboscis is provided with four sets of extrinsic muscles, and there is an anterior dorso-ventral muscle mass connected to all four proboscides.2. The musculature of the body and scolex is described.3. The nervous system consists of a brain, two lateral nerve cords, two outer and inner anterior nerves on each side, twenty-five pairs of bothridial nerves to each bothridium, four longitudinal bothridial nerves connecting these latter before their entry into the bothridia, four proboscis nerves arising from the brain, and a series of lateral nerves supplying the lateral regions of the body.4. The so-called ganglia contain no nerve cells, these are present only in the posterior median commissure which is therefore the nerve centre.


Sign in / Sign up

Export Citation Format

Share Document