scholarly journals Visualizing polymeric components that define distinct root barriers across plant lineages

Development ◽  
2021 ◽  
Vol 148 (23) ◽  
Author(s):  
Moritz Sexauer ◽  
Defeng Shen ◽  
Maria Schön ◽  
Tonni Grube Andersen ◽  
Katharina Markmann

ABSTRACT Hydrophobic cell wall depositions in roots play a key role in plant development and interaction with the soil environment, as they generate barriers that regulate bidirectional nutrient flux. Techniques to label the respective polymers are emerging, but are efficient only in thin roots or sections. Moreover, simultaneous imaging of the barrier constituents lignin and suberin remains problematic owing to their similar chemical compositions. Here, we describe a staining method compatible with single- and multiphoton confocal microscopy that allows for concurrent visualization of primary cell walls and distinct secondary depositions in one workflow. This protocol permits efficient separation of suberin- and lignin-specific signals with high resolution, enabling precise dissection of barrier constituents. Our approach is compatible with imaging of fluorescent proteins, and can thus complement genetic markers or aid the dissection of barriers in biotic root interactions. We further demonstrate applicability in deep root tissues of plant models and crops across phylogenetic lineages. Our optimized toolset will significantly advance our understanding of root barrier dynamics and function, and of their role in plant interactions with the rhizospheric environment.

2021 ◽  
Vol 22 (13) ◽  
pp. 6655
Author(s):  
Haichao Feng ◽  
Ruixin Fu ◽  
Xueqin Hou ◽  
Yu Lv ◽  
Nan Zhang ◽  
...  

Chemotaxis, the ability of motile bacteria to direct their movement in gradients of attractants and repellents, plays an important role during the rhizosphere colonization by rhizobacteria. The rhizosphere is a unique niche for plant–microbe interactions. Root exudates are highly complex mixtures of chemoeffectors composed of hundreds of different compounds. Chemotaxis towards root exudates initiates rhizobacteria recruitment and the establishment of bacteria–root interactions. Over the last years, important progress has been made in the identification of root exudate components that play key roles in the colonization process, as well as in the identification of the cognate chemoreceptors. In the first part of this review, we summarized the roles of representative chemoeffectors that induce chemotaxis in typical rhizobacteria and discussed the structure and function of rhizobacterial chemoreceptors. In the second part we reviewed findings on how rhizobacterial chemotaxis and other root–microbe interactions promote the establishment of beneficial rhizobacteria-plant interactions leading to plant growth promotion and protection of plant health. In the last part we identified the existing gaps in the knowledge and discussed future research efforts that are necessary to close them.


Science ◽  
2020 ◽  
Vol 371 (6524) ◽  
pp. 72-75 ◽  
Author(s):  
Tyler E. Culp ◽  
Biswajit Khara ◽  
Kaitlyn P. Brickey ◽  
Michael Geitner ◽  
Tawanda J. Zimudzi ◽  
...  

Biological membranes can achieve remarkably high permeabilities, while maintaining ideal selectivities, by relying on well-defined internal nanoscale structures in the form of membrane proteins. Here, we apply such design strategies to desalination membranes. A series of polyamide desalination membranes—which were synthesized in an industrial-scale manufacturing line and varied in processing conditions but retained similar chemical compositions—show increasing water permeability and active layer thickness with constant sodium chloride selectivity. Transmission electron microscopy measurements enabled us to determine nanoscale three-dimensional polyamide density maps and predict water permeability with zero adjustable parameters. Density fluctuations are detrimental to water transport, which makes systematic control over nanoscale polyamide inhomogeneity a key route to maximizing water permeability without sacrificing salt selectivity in desalination membranes.


2020 ◽  
pp. 0958305X2097728
Author(s):  
Jiyeon Choi ◽  
Dong-Ik Slong ◽  
Won Sik Shin

This study investigated the sorption of phenol and 4-chlorophenol (4-CP) on natural bentonite modified with hexadecyltrimethylammonium (HDTMA) cation. The Freundlich, Langmuir, Dubinin−Radushkevich (DR), Sips, and Polanyi−Dubinin−Manes (PDM) models fitted the sorption data well (R2 > 0.92). The Freundlich coefficient and the maximum sorbed amount of the Langmuir and PDM models of 4-CP were higher than phenol because of higher hydrophobicity (log Kow = 2.39 for 4-CP and 1.46 for phenol). The PDM model that includes solubility and molar volume was highly useful in predicting the sorption of phenols having widely different hydrophobicity and solubility. The characteristic curves, the plot of sorbed volume ( qv) versus the sorption potential per molar volume ( ε/ Vm) of 4-CP and phenol were distinctly different although they have similar chemical compositions. The selectivity of 4-CP (3.72) was higher than that of phenol (0.27) in binary sorption systems. The sorbed volume ( qv) in the binary sorption was remarkably reduced and the characteristic curve had wider distribution owing to competition in pore-filling. The sorption behaviors were elucidated by partitioning and pore-filling mechanisms. Among the tested binary sorption models, the modified Langmuir competitive model was the best in the prediction of the binary sorption (R2 > 0.98).


2019 ◽  
Vol 70 (3) ◽  
pp. 234
Author(s):  
Xiaojin Zou ◽  
Zhanxiang Sun ◽  
Ning Yang ◽  
Lizhen Zhang ◽  
Wentao Sun ◽  
...  

Intercropping is commonly practiced worldwide because of its benefits to plant productivity and resource-use efficiency. Belowground interactions in these species-diverse agro-ecosystems can greatly contribute to enhancing crop yields; however, our understanding remains quite limited of how plant roots might interact to influence crop biomass, photosynthetic rates, and the regulation of different proteins involved in CO2 fixation and photosynthesis. We address this research gap by using a pot experiment that included three root-barrier treatments with full, partial and no root interactions between foxtail millet (Setaria italica (L.) P.Beauv.) and peanut (Arachis hypogaea L.) across two growing seasons. Biomass of millet and peanut plants in the treatment with full root interaction was 3.4 and 3.0 times higher, respectively, than in the treatment with no root interaction. Net photosynthetic rates also significantly increased by 112–127% and 275–306% in millet and peanut, respectively, with full root interaction compared with no root interaction. Root interactions (without barriers) contributed to the upregulation of key proteins in millet plants (i.e. ribulose 1,5-biphosphate carboxylase; chloroplast β-carbonic anhydrase; phosphoglucomutase, cytoplasmic 2; and phosphoenolpyruvate carboxylase) and in peanut plants (i.e. ribulose 1,5-biphosphate carboxylase; glyceraldehyde-3-phosphate dehydrogenase; and phosphoglycerate kinase). Our results provide experimental evidence of a molecular basis that interspecific facilitation driven by positive root interactions can contribute to enhancing plant productivity and photosynthesis.


ChemInform ◽  
2009 ◽  
Vol 40 (50) ◽  
Author(s):  
Vedangi Sample ◽  
Robert H. Newman ◽  
Jin Zhang

2017 ◽  
Vol 1 ◽  
pp. 239784731774188 ◽  
Author(s):  
Elena Scotti ◽  
Stéphanie Boué ◽  
Giuseppe Lo Sasso ◽  
Filippo Zanetti ◽  
Vincenzo Belcastro ◽  
...  

The analysis of human microbiome is an exciting and rapidly expanding field of research. In the past decade, the biological relevance of the microbiome for human health has become evident. Microbiome comprises a complex collection of microorganisms, with their genes and metabolites, colonizing different body niches. It is now well known that the microbiome interacts with its host, assisting in the bioconversion of nutrients and detoxification, supporting immunity, protecting against pathogenic microbes, and maintaining health. Remarkable new findings showed that our microbiome not only primarily affects the health and function of the gastrointestinal tract but also has a strong influence on general body health through its close interaction with the nervous system and the lung. Therefore, a perfect and sensitive balanced interaction of microbes with the host is required for a healthy body. In fact, growing evidence suggests that the dynamics and function of the indigenous microbiota can be influenced by many factors, including genetics, diet, age, and toxicological agents like cigarette smoke, environmental contaminants, and drugs. The disruption of this balance, that is called dysbiosis, is associated with a plethora of diseases, including metabolic diseases, inflammatory bowel disease, chronic obstructive pulmonary disease, periodontitis, skin diseases, and neurological disorders. The importance of the host microbiome for the human health has also led to the emergence of novel therapeutic approaches focused on the intentional manipulation of the microbiota, either by restoring missing functions or eliminating harmful roles. In the present review, we outline recent studies devoted to elucidate not only the role of microbiome in health conditions and the possible link with various types of diseases but also the influence of various toxicological factors on the microbial composition and function.


Oncogene ◽  
2021 ◽  
Author(s):  
Rósula García-Navas ◽  
Pilar Liceras-Boillos ◽  
Carmela Gómez ◽  
Fernando C. Baltanás ◽  
Nuria Calzada ◽  
...  

AbstractSOS1 ablation causes specific defective phenotypes in MEFs including increased levels of intracellular ROS. We showed that the mitochondria-targeted antioxidant MitoTEMPO restores normal endogenous ROS levels, suggesting predominant involvement of mitochondria in generation of this defective SOS1-dependent phenotype. The absence of SOS1 caused specific alterations of mitochondrial shape, mass, and dynamics accompanied by higher percentage of dysfunctional mitochondria and lower rates of electron transport in comparison to WT or SOS2-KO counterparts. SOS1-deficient MEFs also exhibited specific alterations of respiratory complexes and their assembly into mitochondrial supercomplexes and consistently reduced rates of respiration, glycolysis, and ATP production, together with distinctive patterns of substrate preference for oxidative energy metabolism and dependence on glucose for survival. RASless cells showed defective respiratory/metabolic phenotypes reminiscent of those of SOS1-deficient MEFs, suggesting that the mitochondrial defects of these cells are mechanistically linked to the absence of SOS1-GEF activity on cellular RAS targets. Our observations provide a direct mechanistic link between SOS1 and control of cellular oxidative stress and suggest that SOS1-mediated RAS activation is required for correct mitochondrial dynamics and function.


2009 ◽  
Vol 16 (9) ◽  
pp. 938-944 ◽  
Author(s):  
Michael G Poirier ◽  
Eugene Oh ◽  
Hannah S Tims ◽  
Jonathan Widom

Sign in / Sign up

Export Citation Format

Share Document