Modification of muscle cell phenotype in monolayer culture by different media

Development ◽  
1972 ◽  
Vol 28 (3) ◽  
pp. 559-570
Author(s):  
Oscar Ramírez ◽  
Victor Alemán

Conditions for monolayer cultures of chick skeletal muscle in a rich medium showed that non-muscle contaminants were only 20% of the population. Although the calcium content of this rich medium was 0·95 mm, multinucleate and long fibres were observed after 8 days in culture. Either in rich or in restricted media, gelatin organized the pattern of cell and fibre development in the Petri plates. Cells grown outside the gelatin boundaries looked fibroblast-shaped and many were vacuolated. Gelatin did not fully prevent the growth of fibroblast-like population. Calcium in restricted media appeared to be very important for the acquisition of a definite elongated shape. The possibility of the existence of myofibro-myoblasts was supported by the finding of multinucleated fibroblast-like cells during culture in restricted medium. Epigenetic factors, such as different media in a given culture or the origin of a serum batch utilized as a component of those media, affected the fate of the cultures and might also explain the myoblastic variance observed in this and other studies reported. The capacity of phenotypic expression during the modulation change of muscle cells, in vitro, depends not only upon their genotypic origin but also on parameters such as the cell stage during this process, the type of nutrient media used and the interplay of both parameters; in vivo it depends upon specific cytological interactions.


1979 ◽  
Vol 34 (1-2) ◽  
pp. 124-130 ◽  
Author(s):  
H. B. Leising ◽  
D.O. Schachtschabel

Abstract Purified melanosomes isolated from subcutaneously growing Harding-Passey melanomas of NMRI-mice were labeled either in vitro with [14C] tyrosine or [14C]DOPA in the melanin portion, or in vivo in the melanin and protein portion following i. p. injection of [14C] tyrosine. Treatment of monolayer cultures of Harding-Passey melanoma cells (HPM-73 line) with such labeled melanosomes resulted in rapid uptake of label during the first 4 h which leveled off thereafter. A portion of the “incorporated” label could be removed by a 15 min chase with unlabeled melanosomes.Uptake of labeled melanosomes by HPM-73 cells was followed by increased cellular melaniza­tion which was not only due to melanin derived from incorporated melanosomes but primarily to newly formed melanin. Tyrosinase activity was elevated in melanosome-treated cells. Tyrosinase activity of control cells was significantly reduced following a 24 h exposure to actinomycin D or cycloheximide. On the other side, the same inhibitor treatment of melanosome-pretreated cells resulted in less inhibition of tyrosinase activity.The present findings suggest “melanophagic” properties of cultured melanoma cells resulting in enhanced melanogenesis after phagocytotic uptake of functionally active exogenous melanosomes.



2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi190-vi191
Author(s):  
Yulun Huang ◽  
Lin Qi ◽  
Mari Kogiso ◽  
Yuchen Du ◽  
Frank Braun ◽  
...  

Abstract Diffuse invasion is one of the key features that make GBM particularly difficult to treat. We hypothesize that direct comparison of matched invasive (GBMINV) and tumor core GBM cells (GBMTC) would facilitate the discovery of drivers of pediatric GBM (pGBM) invasion. However, GBMINV cells are extremely difficult to obtain from normal brain tissues because aggressive surgical resection of normal tissue carries the risk of serious neurological deficits. Most past and current studies on GBM invasion were and are forced to utilize the resected primary tumor masses. To overcome this barrier, we utilized a panel of 6 pediatric patient tumor-derived orthotopic xenograft (PDOX) mouse models to isolate matching pairs of GBMTC cells and GBMINV cells and confirmed a significantly elevated invasive capacity in GBMINV cells both in vitro and in vivo. Global profiling of 768 human microRNA using a real-time PCR-based Taqman system identified 23 microRNAs were upregulated in the GBMINV cells in at least 4 of the 6 pGBM models as compared with the matching GBMTC cells. We subsequently showed that silencing the top three miRNAINV, miR-126, miR-369-5p, and miR-487b, suppressed tumor cell migration in vitro (both as neurospheres and monolayer cultures) without affecting cell proliferation, and blocked pGBM invasion in mouse brains. Integrated analysis of the mRNA profiling of the same set of GBMTC and GBMINV cells revealed the affected signaling pathways and identified KCNA1 as the sole common computational target gene of the three miRNAINV. Treatment of three pairs of GBMTC and GBMINV cells with two KCNA1 inhibitors, ADWX1 and Agitoxin 2, caused significant suppression of pGBM cell migration in vitro. In conclusion, this study revealed an intrinsically elevated invasive phenotype in GBMINV cells, identified miR-126, -369-5p, and -487b as novel drivers of pGBM invasion, and characterized KCNA1 as a potential therapeutic target for arresting pGBM invasion.



1991 ◽  
Vol 3 (5) ◽  
pp. 571 ◽  
Author(s):  
JG Thompson ◽  
AC Simpson ◽  
PA Pugh ◽  
RW Wright ◽  
HR Tervit

Embryos were collected from superovulated donors at various intervals from onset of oestrus, ranging from Day 1.5 to Day 6. In addition, blastocysts obtained from the culture of 1-cell embryos collected in vivo or of oocytes matured and fertilized in vitro were used to assess the effects of in vitro manipulation and culture on glucose utilization. Glycolytic activity was determined by the conversion of [5-3H]glucose to 3H2O, and oxidation of glucose was determined by the conversion of [U-14C]glucose to 14CO2. Glucose utilization increases significantly from the 8-cell stage and during compaction and blastulation. Glucose oxidation was at a relatively low level (5-12% of total utilization) compared with glycolysis. No difference was observed between the glycolytic activity of blastocysts derived from in vivo or in vitro sources. However, glucose oxidation was lower (P less than 0.05) in blastocysts derived from the culture of 1-cell embryos or from oocytes matured and fertilized in vitro. Exogenous tricarboxylic acid cycle substrates (i.e. pyruvate and lactate supplied in the medium) affected the level of glucose oxidation.



2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Hai-Jun Gao ◽  
Xu-Dong Sun ◽  
Yan-Ping Luo ◽  
Hua-Sheng Pang ◽  
Xing-Ming Ma ◽  
...  

Abstract Background Echinococcosis, which is caused by the larvae of cestodes of the genus Echinococcus, is a parasitic zoonosis that poses a serious threat to the health of humans and animals globally. Albendazole is the drug of choice for the treatment of echinococcosis, but it is difficult to meet clinical goals with this chemotherapy due to its low cure rate and associated side effects after its long-term use. Hence, novel anti-parasitic targets and effective treatment alternatives are urgently needed. A previous study showed that verapamil (Vepm) can suppress the growth of Echinococcus granulosus larvae; however, the mechanism of this effect remains unclear. The aim of the present study was to gain insight into the anti-echinococcal effect of Vepm on Echinococcus with a particular focus on the regulatory effect of Vepm on calcium/calmodulin-dependent protein kinase II (Ca2+/CaM-CaMKII) in infected mice. Methods The anti-echinococcal effects of Vepm on Echinococcus granulosus protoscoleces (PSC) in vitro and Echinococcus multilocularis metacestodes in infected mice were assessed. The morphological alterations in Echinococcus spp. induced by Vepm were observed by scanning electron microscopy (SEM), and the changes in calcium content in both the parasite and mouse serum and liver were measured by SEM-energy dispersive spectrometry, inductively coupled plasma mass spectrometry and alizarin red staining. Additionally, the changes in the protein and mRNA levels of CaM and CaMKII in infected mice, and in the mRNA levels of CaMKII in E. granulosus PSC, were evaluated after treatment with Vepm by immunohistochemistry and/or real-time quantitative polymerase chain reaction. Results In vitro, E. granulosus PSC could be killed by Vepm at a concentration of 0.5 μg/ml or higher within 8 days. Under these conditions, the ultrastructure of PSC was damaged, and this damage was accompanied by obvious calcium loss and downregulation of CaMKII mRNA expression. In vivo, the weight and the calcium content of E. multilocularis metacestodes from mice were reduced after treatment with 40 mg/kg Vepm, and an elevation of the calcium content in the sera and livers of infected mice was observed. In addition, downregulation of CaM and CaMKII protein and mRNA expression in the livers of mice infected with E. multilocularis metacestodes was found after treatment with Vepm. Conclusions Vepm exerted a parasiticidal effect against Echinococcus both in vitro and in vivo through downregulating the expression of Ca2+/CaM-CaMKII, which was over-activated by parasitic infection. The results suggest that Ca2+/CaM-CaMKII may be a novel drug target, and that Vepm is a potential anti-echinococcal drug for the future control of echinococcosis.



1999 ◽  
Vol 123 (10) ◽  
pp. 949-951
Author(s):  
Carol S. Marshall ◽  
Denis Dwyre ◽  
Robin Eckert ◽  
Liisa Russell

Abstract A 35-year-old gravida 3, para 3 Filipino woman with a negative antibody screen, no prior history of transfusion, and no hemolytic disease of the newborn in her children suffered a massive postpartum hemorrhage requiring transfusion. A severe hemolytic transfusion reaction occurred 5 days after delivery. Subsequently, a panagglutinin on a routine antibody identification panel was identified as anti-Jk3. The patient's red blood cell phenotype was Jk(a−b−) and all of her children were Jk(a−b+), yet the antibody that formed reacted with equal strength against all Jka- or Jkb-positive cells. The rare Jk(a−b−) phenotype is more common in Polynesians. Anti-Jk3, like other Kidd system antibodies, is difficult to detect because in vivo production may be absent between provocative episodes and because these antibodies often show weak in vitro reactions. The increasing numbers of Pacific Islanders in the United States could result in more frequent encounters with this rare phenotype. Increased awareness of ethnic variability in blood phenotypes and of the capricious nature of Kidd antibodies can help pathologists and technologists deal more effectively with these cases.



Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3111
Author(s):  
Po-Yu Lin ◽  
Denny Yang ◽  
Chi-Hsuan Chuang ◽  
Hsuan Lin ◽  
Wei-Ju Chen ◽  
...  

The developmental potential within pluripotent cells in the canonical model is restricted to embryonic tissues, whereas totipotent cells can differentiate into both embryonic and extraembryonic tissues. Currently, the ability to culture in vitro totipotent cells possessing molecular and functional features like those of an early embryo in vivo has been a challenge. Recently, it was reported that treatment with a single spliceosome inhibitor, pladienolide B (plaB), can successfully reprogram mouse pluripotent stem cells into totipotent blastomere-like cells (TBLCs) in vitro. The TBLCs exhibited totipotency transcriptionally and acquired expanded developmental potential with the ability to yield various embryonic and extraembryonic tissues that may be employed as novel mouse developmental cell models. However, it is disputed whether TBLCs are ‘true’ totipotent stem cells equivalent to in vivo two-cell stage embryos. To address this question, single-cell RNA sequencing was applied to TBLCs and cells from early mouse embryonic developmental stages and the data were integrated using canonical correlation analyses. Differential expression analyses were performed between TBLCs and multi-embryonic cell stages to identify differentially expressed genes. Remarkably, a subpopulation within the TBLCs population expressed a high level of the totipotent-related genes Zscan4s and displayed transcriptomic features similar to mouse two-cell stage embryonic cells. This study underscores the subtle differences between in vitro derived TBLCs and in vivo mouse early developmental cell stages at the single-cell transcriptomic level. Our study has identified a new experimental model for stem cell biology, namely ‘cluster 3’, as a subpopulation of TBLCs that can be molecularly defined as near totipotent cells.



2019 ◽  
Author(s):  
Rongqun Guo ◽  
Fangxiao Hu ◽  
Qitong Weng ◽  
Cui Lv ◽  
Hongling Wu ◽  
...  

ABSTRACTAchievement of immunocompetent and therapeutic T lymphopoiesis from pluripotent stem cells is a central aim in T cell regenerative medicine. To date, preferentially regenerating T lymphopoiesis in vivo from pluripotent stem cells (PSC) remains a practical challenge. Here we documented that synergistic and transient expression of Runx1 and Hoxa9 restricted in the time window of endothelial to hematopoietic transition and hematopoietic maturation stages induced in vitro from PSC (iR9-PSC) preferentially generated engraftable hematopoietic progenitors capable of homing to thymus and developing into mature T (iT) cells in primary and secondary immunodeficient recipients. Single-cell transcriptome and functional analyses illustrated the cellular trajectory of T lineage induction from PSC, unveiling the T-lineage specification determined at as early as hemogenic endothelial cell stage and identifying the bona fide pre-thymic progenitors. The iT cells distributed normally in central and peripheral lymphoid organs and exhibited abundant TCRαβ repertoire. The regenerative T lymphopoiesis rescued the immune-surveillance ability in immunodeficient mice. Furthermore, gene-edited iR9-PSC produced tumor-specific-T cells in vivo that effectively eradicated tumor cells. This study provides insight into universal generation of functional and therapeutic T lymphopoiesis from the unlimited and editable PSC source.



Development ◽  
1989 ◽  
Vol 107 (Supplement) ◽  
pp. 141-148 ◽  
Author(s):  
J. M. W. Slack ◽  
B. G. Darlington ◽  
L. L. Gillespie ◽  
S. F. Godsave ◽  
H. V. Isaacs ◽  
...  

In early amphibian development, the mesoderm is formed around the equator of the blastula in response to an inductive signal from the endoderm. A screen of candidate substances showed that a small group of heparin-binding growth factors (HBGFs) were active as mesoderm-inducing agents in vitro. The factors aFGF, bFGF, kFGF and ECDGF all show similar potency and can produce inductions at concentrations above about 100 pM. The product of the murine int-2 gene is also active, but with a lower specific activity. Above the induction threshold there is a progressive increase of muscle formation with dose. Single blastula ectoderm cells can be induced and will differentiate in a defined medium to form mesodermal tissues. All inner blastula cells are competent to respond to the factors but outer cells, bearing oocyte-derived membrane, are not. Inducing activity can be extracted from Xenopus blastulae and binds to heparin like the previously described HBGFs. Antibody neutralization and Western blotting experiments identify this activity as bFGF. The amounts present are small but would be sufficient to evoke inductions in vivo. It is not yet known whether the bFGF is localized to the endoderm, although it is known that inducing activity secreted by endodermal cells can be neutralized by heparin. The competence of ectoderm to respond to HBGFs rises from about the 128-cell stage and falls again by the onset of gastrulation. This change is paralleled by a rise and fall of binding of 125I-aFGF. Chemical cross-linking reveals that this binding is attributable to a receptor of relative molecular mass about 130 × 103. The receptor is present both in the marginal zone, which responds to the signal in vivo, and in the animal pole region, which is not induced in vivo but which will respond to HBGFs in vitro. In the embryo, the induction in the vicinity of the dorsal meridian is much more potent than that around the remainder of the marginal zone circumference. Dorsal inductions contain notochord and will dorsalize ventral mesoderm with which they are later placed in contact. This effect might be due to a local high bFGF concentration or, more likely, to the secretion in the dorsal region of an additional, synergistic factor. It is known that TGF-β-1 and -2 can greatly increase the effect of low doses of bFGF, although it has not yet been demonstrated that they are present in the embryo. Lithium salts have a dorsalizing effect on whole embryos or on explants from the ventral marginal zone, and also show potent synergism when applied together with HBGFs.



1982 ◽  
Vol 243 (2) ◽  
pp. G117-G126
Author(s):  
R. Fogel ◽  
G. W. Sharp ◽  
M. Donowitz

The effects of chloroquine diphosphate, a drug with "'membrane-stabilizing" properties, were studied on basal ileal absorption and on ileal secretion induced by increased intracellular cAMP levels and calcium (serotonin). The studies were performed on rat (in vivo) and rabbit ileum (in vitro). Intraluminal chloroquine (10(-4) M) reversed cholera toxin- and theophylline-induced secretion in rat ileum but did not alter the cholera toxin- and theophylline-induced increases in cAMP content. Addition of chloroquine (10(-4) M) to the mucosal surface of rabbit ileum did not alter basal active electrolyte transport or the serotonin-induced decreased Na and Cl absorption but inhibited the theophylline-induced C1 secretion. Addition of chloroquine (10(-4)) M) to the serosal surface stimulated net Na and Cl absorption. This effect may involve intracellular calcium. Chloroquine increased the rabbit ileal calcium content and decreased 45Ca2+ influx from the serosal surface. Both the mucosal and serosal effects of chloroquine described led to a net increase in absorptive function of the intestine and should prove useful in developing treatment of diarrheal diseases.



1994 ◽  
Vol 11 (4) ◽  
pp. 629-642 ◽  
Author(s):  
V. Möckel ◽  
S. Löhrke ◽  
H.-D. Hofmann

AbstractWe have used monolayer cultures prepared from early postnatal rabbit retinae (days 2–5) by the sandwich technique to study the capacity of immature neurons to express specific neuronal phenotypes in a homogeneous in vitro environment. Applying morphological, immunocytochemical, and autoradiographic criteria, we demonstrate that a variety of phenotypes could be distinguished after 7–14 days in vitro, and correlated with known retinal cell types. Bipolar cell-like neurons (approximately 4% of total cell number) were identified by cell type-specific monoclonal antibodies (115A10) and their characteristic bipolar morphology. Small subpopulations (about 1%) of GABA-immunoreactive neurons acquired elaborate morphologies strikingly similar to those of A- and B-type horizontal cells. Amongst putative amacrine cells several different subpopulations could be classified. GABA-immunoreactive amacrine-like neurons (6.5%), which also showed high affinity [3H]-GABA uptake, comprised cells of varying size and shape and could be subdivided into subpopulations with respect to their response to different glutamate receptor agonists (NMDA, kainic acid, quisqualic acid). In addition, a small percentage of [3H]-GABA accumulating cells with large dendritic fields showed tyrosine-hydroxylase immunoreactivity. Presumptive glycinergic amacrine cells (18.5%) were rather uniform in shape and had small dendritic fields. Release of [3H]-glycine from these neurons was evoked by kainic and quisqualic acid but not by NMDA. Small [3H]-glutamate accumulating neurons with few short processes were the most frequent cell type (73%). This cell type also exhibited opsin immunoreactivity and probably represented incompletely differentiated photoreceptor cells. Summing the numbers of characterized cells indicated that we were able to attribute a defined retinal phenotype to most, if not all of the cultured neurons. Thus, we have demonstrated that immature neuronal cells growing in monolayer cultures, in the absence of a structured environment, are capable of maintaining or producing specific morphological and functional properties corresponding to those expressed in vivo. These results stress the importance of intrinsic factors for the regulation of neuronal differentiation. On the other hand, morphological differentiation was far from perfect indicating the requirement for regulatory factors.



Sign in / Sign up

Export Citation Format

Share Document