scholarly journals Limb-somite relationship: effect of removal of somitic mesoderm on the wing musculature

Development ◽  
1978 ◽  
Vol 43 (1) ◽  
pp. 263-278
Author(s):  
Alain Chevallier ◽  
Madeleine Kieny ◽  
Annick Mauger

The aim of this study is to test the ability of the intrinsic wing musculature to develop in the absence of somitic mesoderm. The experiments were performed on 2- to 2.5-day chick embryos either by replacing the somitic mesoderm adjacent to the wing field with a piece of 9-day chick embryonic midgut or by destroying, through local X-irradiation, not only the somitic mesoderm of the wing level, but also at least three somites (or presumptive somites) anterior and/or three presumptive somites posterior to the wing level. The replacement of somitic tissue scarcely affected the organogenesis of the forearm musculature, at least when both bones were present. In the other experiments, radio-destruction severely impaired the development of the forearm muscles, which were seldom all present and in most cases were entirely missing. The absence of a given muscle involves the simultaneous absence of the corresponding tendons. The possible origins of the muscles that formed despite the removal of the somitic mesoderm are discussed.

Development ◽  
1988 ◽  
Vol 104 (1) ◽  
pp. 15-28 ◽  
Author(s):  
H. Aoyama ◽  
K. Asamoto

Somites are mesodermal structures which appear transiently in vertebrates in the course of their development. Cells situated ventromedially in a somite differentiate into the sclerotome, which gives rise to cartilage, while the other part of the somite differentiates into dermomyotome which gives rise to muscle and dermis. The sclerotome is further divided into a rostral half, where neural crest cells settle and motor nerves grow, and a caudal half. To find out when these axes are determined and how they rule later development, especially the morphogenesis of cartilage derived from the somites, we transplanted the newly formed three caudal somites of 2.5-day-old quail embryos into chick embryos of about the same age, with reversal of some axes. The results were summarized as follows. (1) When transplantation reversed only the dorsoventral axis, one day after the operation the two caudal somites gave rise to normal dermomyotomes and sclerotomes, while the most rostral somite gave rise to a sclerotome abnormally situated just beneath ectoderm. These results suggest that the dorsoventral axis was not determined when the somites were formed, but began to be determined about three hours after their formation. (2) When the transplantation reversed only the rostrocaudal axis, two days after the operation the rudiments of dorsal root ganglia were formed at the caudal (originally rostral) halves of the transplanted sclerotomes. The rostrocaudal axis of the somites had therefore been determined when the somites were formed. (3) When the transplantation reversed both the dorsoventral and the rostrocaudal axes, two days after the operation, sclerotomes derived from the prospective dermomyotomal region of the somites were shown to keep their original rostrocaudal axis, judging from the position of the rudiments of ganglia. Combined with results 1 and 2, this suggested that the fate of the sclerotomal cells along the rostrocaudal axis was determined previously and independently of the determination of somite cell differentiation into dermomyotome and sclerotome. (4) In the 9.5-day-old chimeric embryos with rostrocaudally reversed somites, the morphology of vertebrae and ribs derived from the explanted somites were reversed along the rostrocaudal axis. The morphology of cartilage derived from the somites was shown to be determined intrinsically in the somites by the time these were formed from the segmental plate. The rostrocaudal pattern of the vertebral column is therefore controlled by factors intrinsic to the somitic mesoderm, and not by interactions between this mesoderm and the notochord and/or neural tube, arising after segmentation.


Development ◽  
1979 ◽  
Vol 49 (1) ◽  
pp. 153-165
Author(s):  
Madeleine Kieny ◽  
Alain Chevallier

The aim of this study performed in the embryonic chick wing is to test the ability of the tendons to form and develop in the absence of the muscle bellies. The experiments were performed on 2-day chick embryos by destroying a portion of the somitic mesoderm by local X-irradiation. The irradiated part included the wing somite level 15—20 and extended three somites (or presumptive somites) in front and two to six presumptive somites in the rear of the wing somite level. The wings of the operated side were examined histologically 3—8 days after the X-irradiation. The radio-destruction of the somitic mesoderm totally inhibited or severely impaired the development of the forearm muscles. But, despite the absence of the flexor and extensor muscles the differentiation of the distal manus tendons could be observed. This differentiationoccurred at the same time and in the same position as in controls. However, these tendons were transient structures. They disappeared within three days after their individuation. Two mechanisms that progressed in proximo-distal direction were involved in their resorption: cellular dislocation and cell death. We conclude that tendons start to develop autonomously from the muscle bulks, but for their maintenance and further development they require connexion to a muscle belly.


Development ◽  
1989 ◽  
Vol 106 (1) ◽  
pp. 85-93 ◽  
Author(s):  
C. Kalcheim ◽  
M.A. Teillet

We have investigated dorsal root ganglion formation, in the avian embryo, as a function of the composition of the paraxial somitic mesoderm. Three or four contiguous young somites were unilaterally removed from chick embryos and replaced by multiple cranial or caudal half-somites from quail embryos. Migration of neural crest cells and formation of DRG were subsequently visualized both by the HNK-1 antibody and the Feulgen nuclear stain. At advanced migratory stages (as defined by Teillet et al. Devl Biol. 120, 329–347 1987), neural crest cells apposed to the dorsolateral faces of the neural tube were distributed in a continuous, nonsegmented pattern that was indistinguishable on unoperated sides and on sides into which either half of the somites had been grafted. In contrast, ventrolaterally, neural crest cells were distributed segmentally close to the neural tube and within the cranial part of each normal sclerotome, whereas they displayed a nonsegmental distribution when the graft involved multiple cranial half-somites or were virtually absent when multiple caudal half-somites had been implanted. In spite of the identical dorsal distribution of neural crest cells in all embryos, profound differences in the size and segmentation of DRG were observed during gangliogenesis (E4–9) according to the type of graft that had been performed. Thus when the implant consisted of compound cranial half-somites, giant, coalesced ganglia developed, encompassing the entire length of the graft. On the other hand, very small, dorsally located ganglia with irregular segmentation were seen at the level corresponding to the graft of multiple caudal half-somites. We conclude that normal morphogenesis of dorsal root ganglia depends upon the craniocaudal integrity of the somites.


Development ◽  
1987 ◽  
Vol 100 (4) ◽  
pp. 661-671 ◽  
Author(s):  
B. Kramer ◽  
A. Andrew ◽  
B.B. Rawdon ◽  
P. Becker

To determine whether mesenchyme plays a part in the differentiation of gut endocrine cells, proventricular endoderm from 4- to 5-day chick or quail embryos was associated with mesenchyme from the dorsal pancreatic bud of chick embryos of the same age. The combinations were grown on the chorioallantoic membranes of host chick embryos until they reached a total incubation age of 21 days. Proventricular or pancreatic endoderm of the appropriate age and species reassociated with its own mesenchyme provided the controls. Morphogenesis in the experimental grafts corresponded closely to that in proventricular controls, i.e. the pancreatic mesenchyme supported the development of proventricular glands from proventricular endoderm. Insulin, glucagon and somatostatin cells and cells with pancreatic polypeptide-like immunoreactivity differentiated in the pancreatic controls. The latter three endocrine cell types, together with neurotensin and bombesin/gastrin-releasing polypeptide (GRP) cells, developed in proventricular controls and experimental grafts. The proportions of the major types common to proventriculus and pancreas (somatostatin and glucagon cells) were in general similar when experimental grafts were compared with proventricular controls but different when experimental and pancreatic control grafts were compared. Hence pancreatic mesenchyme did not materially affect the proportions of these three cell types in experimental grafts, induced no specific pancreatic (insulin) cell type and allowed the differentiation of the characteristic proventricular endocrine cell types, neurotensin and bombesin/GRP cells. However, an important finding was a significant reduction in the proportion of bombesin/GRP cells, attributable in part to a decrease in their number and in part to an increase in the numbers of endocrine cells of the other types. This indicates that mesenchyme may well play a part in determining the regional specificity of populations of gut endocrine cells.


Development ◽  
1959 ◽  
Vol 7 (1) ◽  
pp. 66-72
Author(s):  
L. Gwen Britt ◽  
Heinz Herrmann

The recent development of techniques originally devised by Waddington (1932) for the maintenance of the explanted chick embryo (Spratt, 1947; New, 1955; Wolff & Simon, 1955) has opened the possibility of determining quantitatively some parameters of the developmental processes occurring in embryonic tissues under these conditions. As a result of such measurements, protein accumulation in explanted embryos was found to be much smaller than in embryos developing in the egg. On the other hand, the progress of somite formation was found to take place at similar rates in embryos developing as explants or in situ (Herrmann & Schultz, 1958). The slow rate of protein accumulation in the explanted embryos made it seem desirable to investigate whether under some other conditions of explantation protein accumulation would approach more closely the rate of protein formation observed in the naturally developing embryo.


Development ◽  
1992 ◽  
Vol 114 (1) ◽  
pp. 31-38 ◽  
Author(s):  
N.D. Hopwood ◽  
A. Pluck ◽  
J.B. Gurdon ◽  
S.M. Dilworth

A monoclonal antibody specific for Xenopus MyoD (XMyoD) has been characterized and used to describe the pattern of expression of this myogenic factor in early frog development. The antibody recognizes an epitope close to the N terminus of the products of both XMyoD genes, but does not bind XMyf5 or XMRF4, the other two myogenic factors that have been described in Xenopus. It reacts in embryo extracts only with XMyoD, which is extensively phosphorylated in the embryo. The distribution of XMyoD protein, seen in sections and whole-mounts, and by immunoblotting, closely follows that of XMyoD mRNA. XMyoD protein accumulates in nuclei of the future somitic mesoderm from the middle of gastrulation. In neurulae and tailbud embryos it is expressed specifically in the myotomal cells of the somites. XMyoD is in the nucleus of apparently every cell in the myotomes. It accumulates first in the anterior somitic mesoderm, and its concentration then declines in anterior somites from the tailbud stage onwards.


Development ◽  
1972 ◽  
Vol 28 (2) ◽  
pp. 343-366
Author(s):  
Par Annick Mauger

The role of somitic mesoderm in the development of dorsal plumage in chick embryos. II. Regionalisation. Transplantation and inversion experiments were performed on the somitic mesoderm of 2- to 2·5-day chick embryos in order to study the role of regional and axial determinations in the development of the dorsal plumage. The transposition of a piece of somitic mesoderm from the posterior cervical region (where the spinal pteryla is narrow) to the thoraco-lumbar region (where it is wide) leads to a local and unilateral narrowing of the spinal pteryla at the operation site. Conversely, the transposition of somitic mesoderm from the thoraco-lumbar region to the posterior cervical region results in a local and unilateral widening of the spinal pteryla. Consequently at the time of operation the segmented or not yet segmented somitic mesoderm is already determined to give rise to a definite transverse level of the spinal pteryla. The inversion of the cephalo-caudal polarity of a piece of somitic mesoderm without the ectodermal covering, or of a portion of the axial organs deprived of the overlying ectoderm has no effect on the orientation of feather filaments and feather rows. In contrast, the inversion of the cephalo-caudal polarity of a portion of the axial organs together with the overlying ectoderm results in the development of feathers growing in a cephalad direction and feather chevrons opening towards the head of the embryo. The inversion of the dorso-ventral polarity of a piece of somitic mesoderm does not prevent the normal differentiation of feathers in the operated region. The inversion of the medio-lateral polarity of a piece of unsegmented somitic mesoderm has little effect on the development of the spinal pteryla. On the contrary, the medio-lateral inversion of a chain of somites precludes the formation of the feathers at the level of operation. The somitic mesoderm, even when segmented, is endowed with extensive regulative capacity of its axes, except for the medio-lateral polarity, which is fixed irreversibly at the time of segmentation. The regional determination of the feather-forming somitic mesoderm is acquired at an early stage, at any rate before segmentation. However, at a given transverse level of the cephalo-caudal axis, the somitic cells remain totipotent as concerns their histo-genetic destiny (dermatome, myotome, or sclerotome) until after the onset of segmentation.


2020 ◽  
Vol 129 (4) ◽  
pp. 950-974 ◽  
Author(s):  
Cyril Etienne ◽  
Christophe Mallet ◽  
Raphaël Cornette ◽  
Alexandra Houssaye

Abstract Many tetrapod lineages show extreme increases in body mass in their evolutionary history, associated with important osteological changes. The ankle joint, essential for foot movement, is assumed to be particularly affected in this regard. We investigated the morphological adaptations of the astragalus and the calcaneus in Rhinocerotidae, and analysed them in light of a comparative analysis with other Perissodactyla. We performed 3D geometric morphometrics and correlated shape with centroid size of the bone and body mass of the species. Our results show that mass has an influence on bone shape in Rhinocerotidae and in Perissodactyla, but this is not as strong as expected. In heavy animals the astragalus has a flatter trochlea, orientated more proximally, associated with a more upright posture of the limb. The calcaneus is more robust, possibly to sustain the greater tension force exerted by the muscles during plantarflexion. Both bones show wider articular facets, providing greater cohesion and better dissipation of the loading forces. The body plan of the animals also has an influence. Short-legged Teleoceratina have a flatter astragalus than the other rhinocerotids. Paraceratherium has a thinner calcaneus than expected. This study clarifies adaptations to high body weight among Rhinocerotidae and calls for similar investigations in other groups with massive forms.


1964 ◽  
Vol 17 (4) ◽  
pp. 907 ◽  
Author(s):  
GW Grigg

X-irradiation increased the reversion frequency of two transition mutants of Escherichia coli, one of which (meth-) differed genetically from wild type by an adenine-thymine substitution of a guanine-cytosine base pair, the other (urg-2-) by a guanine-cytosine substitution of an adenine-thymine base pair. The lethal effects of the radiation were greatest when protein synthesis was prevented for a period immediately after irradiation. A period of 30 min at 37�0 was as effective as 22 hr. Irradiation of a saline suspension gave a lower survival of 0�2 times that of bacteria irradiated after being spread on minimal agar plates.


2017 ◽  
Author(s):  
Ben K. A. Nelemans ◽  
Manuel Schmitz ◽  
Hannan Tahir ◽  
Roeland M. H. Merks ◽  
Theodoor H. Smit

AbstractPhysical cues, experienced during early embryonic development, can influence species-specific vertebral numbers. Here we show that mechanical stretching of live chicken embryos can induce the formation of additional somites and thereby modify early segmental patterning. Stretching deforms the somites, and results in a cellular reorganization that forms stable daughter somites. Cells from the somite core thereby undergo mesenchymal-to-epithelial transitions (MET), thus meeting the geometrical demand for more border cells. Using a Cellular Potts Model, we suggest that this MET occurs through lateral induction by the existing epithelial cells. Our results indicate that self-organizing properties of the somitic mesoderm generate phenotypic plasticity that allows it to cope with variations in the mechanical environment. This plasticity may provide a novel mechanism for explaining how vertebral numbers in species may have increased during evolution. Additionally, by preventing the formation of transitional vertebrae, these self-organization qualities of somites may be selectively advantageous.


Sign in / Sign up

Export Citation Format

Share Document