Is maternal mRNA a determinant of tissue-specific proteins in ascidian embryos?

Development ◽  
1986 ◽  
Vol 97 (Supplement) ◽  
pp. 1-14
Author(s):  
W. R. Jeffery ◽  
W. R Bates ◽  
R. L. Beach ◽  
C. R. Tomlinson

The generation of different cell types during embryonic development is thought to be mediated by the combined activity of cytoplasmic factors (determinants), which are localized in the egg, and inductive interactions, which occur between different embryonic cells and tissues. Ascidians, animals that exhibit rapid and exceptionally autonomous development (reviewed by Jeffery, 1985), appear to employ cytoplasmic determinants to generate embryonic cell diversity. Although determinants have not been identified in ascidians or other animals, it is hypothesized that they function in at least two different ways. First, as initially pointed out by Morgan (1934), determinants may be regulatory factors which promote differential gene expression in specific cell lineages. Consistent with this possibility, inhibitors of transcription, added prior to gastrulation, block the appearance of some ascidian tissue-specific enzymes and morphological markers whose expression is regulated by the activity of cytoplasmic determinants (Whittaker, 1973; Crowther & Whittaker, 1984). Second, determinants may be localized factors which promote cell diversification independent of zygotic gene expression.

1972 ◽  
Vol 53 (2) ◽  
pp. 435-449 ◽  
Author(s):  
Irving Goldschneider ◽  
A. A. Moscona

With the use of antisera prepared in rabbits against suspensions of live embryonic chick tissue cells, qualitative differences in cell surface antigens were demonstrated on cells from different embryonic chick tissues by immune agglutination and immunofluorescence. Unabsorbed antisera reacted with both homologous and nonhomologous cells; thorough absorption of the antisera with heterologous tissues removed cross-reacting antibodies, and the antisera acquired a high degree of tissue specificity. Thus, antiretina cell serum absorbed with nonretina cells or tissues, agglutinated only neural retina cells, and was shown by immunofluorescence tests to react specifically with the surface of retina cells, both in cell suspensions and in frozen tissue sections. Comparable results with antisera against cells from embryonic liver and other tissues demonstrated the existence of tissue-specific, phenotypic disparities in the antigenicities of embryonic cell surfaces, in addition to the presence of cell-surface antigens shared by certain classes of cells, and of antigens common to all cells in the embryo. The results are discussed in terms of the possible involvement of such phenotypic determinants in the specification of cell surfaces, in relation to cell recognition and developmental interactions.


Development ◽  
2021 ◽  
Author(s):  
Ping Kao ◽  
Michael A. Schon ◽  
Magdalena Mosiolek ◽  
Balaji Enugutti ◽  
Michael D. Nodine

Soon after fertilization of egg and sperm, plant genomes become transcriptionally activated and drive a series of coordinated cell divisions to form the basic body plan during embryogenesis. Early embryonic cells rapidly diversify from each other, and investigation of the corresponding gene expression dynamics can help elucidate underlying cellular differentiation programs. However, current plant embryonic transcriptome datasets either lack cell-specific information or have RNA contamination from surrounding non-embryonic tissues. We have coupled fluorescence-activated nuclei sorting together with single-nucleus mRNA sequencing to construct a gene expression atlas of Arabidopsis thaliana early embryos at single-cell resolution. In addition to characterizing cell-specific transcriptomes, we found evidence that distinct epigenetic and transcriptional regulatory mechanisms operate across emerging embryonic cell types. These datasets and analyses, as well as the approach we devised, are expected to facilitate the discovery of molecular mechanisms underlying pattern formation in plant embryos.


2021 ◽  
Author(s):  
Ping Kao ◽  
Michael A Schon ◽  
Magdalena Mosiolek ◽  
Michael D Nodine

Soon after fertilization of egg and sperm, plant genomes become transcriptionally activated and drive a series of coordinated cell divisions to form the basic body plan during embryogenesis. Early embryonic cells rapidly diversify from each other, and investigation of the corresponding gene expression dynamics can help elucidate underlying cellular differentiation programs. However, current plant embryonic transcriptome datasets either lack cell-specific information or have RNA contamination from surrounding non-embryonic tissues. We have coupled fluorescence-activated nuclei sorting together with single-nucleus mRNA sequencing to construct a gene expression atlas of Arabidopsis thaliana early embryos at single-cell resolution. In addition to characterizing cell-specific transcriptomes, we found evidence that distinct epigenetic and transcriptional regulatory mechanisms operate across emerging embryonic cell types. These datasets and analyses, as well as the approach we devised, are expected to facilitate the discovery of molecular mechanisms underlying pattern formation in plant embryos.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Deepa Bhartiya

AbstractLife-long tissue homeostasis of adult tissues is supposedly maintained by the resident stem cells. These stem cells are quiescent in nature and rarely divide to self-renew and give rise to tissue-specific “progenitors” (lineage-restricted and tissue-committed) which divide rapidly and differentiate into tissue-specific cell types. However, it has proved difficult to isolate these quiescent stem cells as a physical entity. Recent single-cell RNAseq studies on several adult tissues including ovary, prostate, and cardiac tissues have not been able to detect stem cells. Thus, it has been postulated that adult cells dedifferentiate to stem-like state to ensure regeneration and can be defined as cells capable to replace lost cells through mitosis. This idea challenges basic paradigm of development biology regarding plasticity that a cell enters point of no return once it initiates differentiation. The underlying reason for this dilemma is that we are putting stem cells and somatic cells together while processing for various studies. Stem cells and adult mature cell types are distinct entities; stem cells are quiescent, small in size, and with minimal organelles whereas the mature cells are metabolically active and have multiple organelles lying in abundant cytoplasm. As a result, they do not pellet down together when centrifuged at 100–350g. At this speed, mature cells get collected but stem cells remain buoyant and can be pelleted by centrifuging at 1000g. Thus, inability to detect stem cells in recently published single-cell RNAseq studies is because the stem cells were unknowingly discarded while processing and were never subjected to RNAseq. This needs to be kept in mind before proposing to redefine adult stem cells.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Wiruntita Chankeaw ◽  
Sandra Lignier ◽  
Christophe Richard ◽  
Theodoros Ntallaris ◽  
Mariam Raliou ◽  
...  

Abstract Background A number of studies have examined mRNA expression profiles of bovine endometrium at estrus and around the peri-implantation period of pregnancy. However, to date, these studies have been performed on the whole endometrium which is a complex tissue. Consequently, the knowledge of cell-specific gene expression, when analysis performed with whole endometrium, is still weak and obviously limits the relevance of the results of gene expression studies. Thus, the aim of this study was to characterize specific transcriptome of the three main cell-types of the bovine endometrium at day-15 of the estrus cycle. Results In the RNA-Seq analysis, the number of expressed genes detected over 10 transcripts per million was 6622, 7814 and 8242 for LE, GE and ST respectively. ST expressed exclusively 1236 genes while only 551 transcripts were specific to the GE and 330 specific to LE. For ST, over-represented biological processes included many regulation processes and response to stimulus, cell communication and cell adhesion, extracellular matrix organization as well as developmental process. For GE, cilium organization, cilium movement, protein localization to cilium and microtubule-based process were the only four main biological processes enriched. For LE, over-represented biological processes were enzyme linked receptor protein signaling pathway, cell-substrate adhesion and circulatory system process. Conclusion The data show that each endometrial cell-type has a distinct molecular signature and provide a significantly improved overview on the biological process supported by specific cell-types. The most interesting result is that stromal cells express more genes than the two epithelial types and are associated with a greater number of pathways and ontology terms.


2009 ◽  
Vol 12 (5) ◽  
pp. 337-346 ◽  
Author(s):  
Anne M. Stevens ◽  
Heidi M. Hermes ◽  
Meghan M. Kiefer ◽  
Joe C. Rutledge ◽  
J. Lee Nelson

Maternal microchimerism (MMc) has been purported to play a role in the pathogenesis of autoimmunity, but how a small number of foreign cells could contribute to chronic, systemic inflammation has not been explained. Reports of peripheral blood cells differentiating into tissue-specific cell types may shed light on the problem in that chimeric maternal cells could act as target cells within tissues. We investigated MMc in tissues from 7 male infants. Female cells, presumed maternal, were characterized by simultaneous immunohistochemistry and fluorescence in situ hybridization for X- and Y-chromosomes. Maternal cells constituted 0.017% to 1.9% of parenchymal cells and were found in all infants in liver, pancreas, lung, kidney, bladder, skin, and spleen. Maternal cells were differentiated: maternal hepatocytes in liver, renal tubular cells in kidney, and β-islet cells in pancreas. Maternal cells were not found in areas of tissue injury or inflammatory infiltrate. Maternal hematopoietic cells were found only in hearts from patients with neonatal lupus. Thus, differentiated maternal cells are present in multiple tissue types and occur independently of inflammation or tissue injury. Loss of tolerance to maternal parenchymal cells could lead to organ-specific “auto” inflammatory disease and elimination of maternal cells in areas of inflammation.


2002 ◽  
Vol 50 (8) ◽  
pp. 1031-1037 ◽  
Author(s):  
Betty Ky ◽  
Paul J. Shughrue

Isotopic in situ hybridization (ISH) has been established as a uniquely powerful tool for the study of gene expression in specific cell types. This technique allows the visualization and quantification of gene expression and gene expression changes in cells. In our study of biological and molecular phenomena, we have increasingly encountered the need to detect small changes in gene expression as well as genes of low abundance, such as the oxytocin receptor (OTR) and the tuberoinfundibular peptide of 39 residues (Tip39). To increase the sensitivity of isotopic ISH for detection of rare mRNAs, we performed ISH on cryostat sections of rat hypothalamus and thalamus with 35S-labeled riboprobes and amplified the signal by hybridizing over 2 nights as well as labeling the probe with both [35S]-UTP and [35S]-ATP. These two methods of enhancement independently and in combination demonstrated a dramatic increase in signal, allowing the visualization of low levels of gene expression previously undetectable by conventional methods.


Fly ◽  
2011 ◽  
Vol 5 (3) ◽  
pp. 261-265 ◽  
Author(s):  
Pierre-Adiren Salmand ◽  
Magali Iché-Torres ◽  
Laurent Perrin

Author(s):  
Alicia M. Barnett ◽  
Jane A. Mullaney ◽  
Charlotte Hendriks ◽  
Lisa Le Borgne ◽  
Warren C. McNabb ◽  
...  

The development of alternative in vitro culture methods has increased in the last decade as three-dimensional organoids of various tissues, including those of the small and large intestines. Due to their multicellular composition, organoids offer advantages over traditionally used immortalized or primary cell lines. However, organoids must be accurate models of their tissues of origin. This study compared gene expression profiles with respect to markers of specific cell-types (stem-cells, enterocytes, goblet and enteroendocrine cells) and barrier maturation (tight junctions) of colonoid and enteroid cultures with their tissues of origin, and colonoids with enteroids. Colonoids derived from three healthy pigs formed multi-lobed structures with a monolayer of cells similar to the crypt structures in colonic tissue. Colonoid and enteroid gene expression signatures were more similar to those found for the tissues of their origin than to each other. However, relative to their derived tissues, organoids had increased gene expression levels of stem-cell markers Sox9 and Lgr5 encoding Sex determining region Y-box 9 and leucine-rich repeat-containing G-protein coupled rector 5, respectively. In contrast, expression levels of Occl and Zo1 encoding occludin and zonula occludens 1 respectively, were decreased. Expression levels of the cell lineage markers Atoh1, Cga and Muc2 encoding atonal homolog 1, chromogranin A and mucin 2 respectively, were decreased in colonoids, while Sglt1 and Apn encoding sodium-glucose transporter 1 and aminopeptidase A respectively, were decreased in enteroids. These results indicate colonoid and enteroid cultures were predominantly comprised of undifferentiated cell-types with decreased barrier maturation relative to their tissues of origin.


Sign in / Sign up

Export Citation Format

Share Document