scholarly journals Saturation mutagenesis defines novel mouse models of severe spine deformity

Author(s):  
Jonathan J Rios ◽  
Kristin Denton ◽  
Hao Yu ◽  
Kandamurugu Manickam ◽  
Shannon Garner ◽  
...  

Embryonic formation and patterning of the vertebrate spinal column requires coordination of many molecular cues. After birth, the integrity of the spine is impacted by developmental abnormalities of the skeletal, muscular, and nervous systems, which may result in deformities such as kyphosis and scoliosis. We sought to identify novel genetic mouse models of severe spine deformity by implementing in vivo skeletal radiography as part of a high-throughput saturation mutagenesis screen. We report selected examples of genetic mouse models following radiographic screening of 54,497 mice from 1,275 pedigrees. An estimated 30.44% of autosomal genes harbored predicted damaging alleles examined twice or more in the homozygous state. Of the 1,275 pedigrees screened, 7.4% presented with severe spine deformity developing in multiple mice, and of these, meiotic mapping implicated ENU alleles in 21% of pedigrees. Our study provides proof-of-concept that saturation mutagenesis is capable of discovering novel mouse models of human disease, including conditions with skeletal, neural, and neuromuscular pathologies. Furthermore, we report a mouse model of skeletal disease, including severe spine deformity, caused by recessive mutation in Scube3. By integrating results with a human clinical exome database, we identified a patient with undiagnosed skeletal disease who harbored recessive mutations in SCUBE3, and we demonstrated that disease-associated mutations are associated with reduced trans-activation of Smad signaling in vitro. All radiographic results and mouse models are made publicly available through the Mutagenetix online database with the goal of advancing understanding of spine development and discovering novel mouse models of human disease.

mBio ◽  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Leon N. Schulte ◽  
Matthias Schweinlin ◽  
Alexander J. Westermann ◽  
Harshavardhan Janga ◽  
Sara C. Santos ◽  
...  

ABSTRACT A major obstacle in infection biology is the limited ability to recapitulate human disease trajectories in traditional cell culture and animal models, which impedes the translation of basic research into clinics. Here, we introduce a three-dimensional (3D) intestinal tissue model to study human enteric infections at a level of detail that is not achieved by conventional two-dimensional monocultures. Our model comprises epithelial and endothelial layers, a primary intestinal collagen scaffold, and immune cells. Upon Salmonella infection, the model mimics human gastroenteritis, in that it restricts the pathogen to the epithelial compartment, an advantage over existing mouse models. Application of dual transcriptome sequencing to the Salmonella-infected model revealed the communication of epithelial, endothelial, monocytic, and natural killer cells among each other and with the pathogen. Our results suggest that Salmonella uses its type III secretion systems to manipulate STAT3-dependent inflammatory responses locally in the epithelium without accompanying alterations in the endothelial compartment. Our approach promises to reveal further human-specific infection strategies employed by Salmonella and other pathogens. IMPORTANCE Infection research routinely employs in vitro cell cultures or in vivo mouse models as surrogates of human hosts. Differences between murine and human immunity and the low level of complexity of traditional cell cultures, however, highlight the demand for alternative models that combine the in vivo-like properties of the human system with straightforward experimental perturbation. Here, we introduce a 3D tissue model comprising multiple cell types of the human intestinal barrier, a primary site of pathogen attack. During infection with the foodborne pathogen Salmonella enterica serovar Typhimurium, our model recapitulates human disease aspects, including pathogen restriction to the epithelial compartment, thereby deviating from the systemic infection in mice. Combination of our model with state-of-the-art genetics revealed Salmonella-mediated local manipulations of human immune responses, likely contributing to the establishment of the pathogen’s infection niche. We propose the adoption of similar 3D tissue models to infection biology, to advance our understanding of molecular infection strategies employed by bacterial pathogens in their human host.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A663-A663
Author(s):  
Keegan Cooke ◽  
Juan Estrada ◽  
Jinghui Zhan ◽  
Jonathan Werner ◽  
Fei Lee ◽  
...  

BackgroundNeuroendocrine tumors (NET), including small cell lung cancer (SCLC), have poor prognosis and limited therapeutic options. AMG 757 is an HLE BiTE® immune therapy designed to redirect T cell cytotoxicity to NET cells by binding to Delta-like ligand 3 (DLL3) expressed on the tumor cell surface and CD3 on T cells.MethodsWe evaluated activity of AMG 757 in NET cells in vitro and in mouse models of neuroendocrine cancer in vivo. In vitro, co-cultures of NET cells and human T cells were treated with AMG 757 in a concentration range and T cell activation, cytokine production, and tumor cell killing were assessed. In vivo, AMG 757 antitumor efficacy was evaluated in xenograft NET and in orthotopic models designed to mimic primary and metastatic SCLC lesions. NSG mice bearing established NET were administered human T cells and then treated once weekly with AMG 757 or control HLE BiTE molecule; tumor growth inhibition was assessed. Pharmacodynamic effects of AMG 757 in tumors were also evaluated in SCLC models following a single administration of human T cells and AMG 757 or control HLE BiTE molecule.ResultsAMG 757 induced T cell activation, cytokine production, and potent T cell redirected killing of DLL3-expressing SCLC, neuroendocrine prostate cancer, and other DLL3-expressing NET cell lines in vitro. AMG 757-mediated redirected lysis was specific for DLL3-expressing cells. In patient-derived xenograft and orthotopic models of SCLC, single-dose AMG 757 effectively engaged human T cells administered systemically, leading to a significant increase in the number of human CD4+ and CD8+ T cells in primary and metastatic tumor lesions. Weekly administration of AMG 757 induced significant tumor growth inhibition of SCLC (figure 1) and other NET, including complete regression of established tumors and clearance of metastatic lesions. These findings warranted evaluation of AMG 757 (NCT03319940); the phase 1 study includes dose exploration (monotherapy and in combination with pembrolizumab) and dose expansion (monotherapy) in patients with SCLC (figure 2). A study of AMG 757 in patients with neuroendocrine prostate cancer is under development based on emerging data from the ongoing phase 1 study.Abstract 627 Figure 1AMG 757 Significantly reduced tumor growth in orthotopic SCLC mouse modelsAbstract 627 Figure 2AMG 757 Phase 1 study designConclusionsAMG 757 engages and activates T cells to kill DLL3-expressing SCLC and other NET cells in vitro and induces significant antitumor activity against established xenograft tumors in mouse models. These preclinical data support evaluation of AMG 757 in clinical studies of patients with NET.Ethics ApprovalAll in vivo work was conducted under IACUC-approved protocol #2009-00046.


2019 ◽  
Vol 5 (5) ◽  
pp. eaau8857 ◽  
Author(s):  
M. Di Rienzo ◽  
M. Antonioli ◽  
C. Fusco ◽  
Y. Liu ◽  
M. Mari ◽  
...  

Optimal autophagic activity is crucial to maintain muscle integrity, with either reduced or excessive levels leading to specific myopathies. LGMD2H is a muscle dystrophy caused by mutations in the ubiquitin ligase TRIM32, whose function in muscles remains not fully understood. Here, we show that TRIM32 is required for the induction of muscle autophagy in atrophic conditions using both in vitro and in vivo mouse models. Trim32 inhibition results in a defective autophagy response to muscle atrophy, associated with increased ROS and MuRF1 levels. The proautophagic function of TRIM32 relies on its ability to bind the autophagy proteins AMBRA1 and ULK1 and stimulate ULK1 activity via unanchored K63-linked polyubiquitin. LGMD2H-causative mutations impair TRIM32’s ability to bind ULK1 and induce autophagy. Collectively, our study revealed a role for TRIM32 in the regulation of muscle autophagy in response to atrophic stimuli, uncovering a previously unidentified mechanism by which ubiquitin ligases activate autophagy regulators.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 460
Author(s):  
Beatriz Medeiros-Fonseca ◽  
Antonio Cubilla ◽  
Haissa Brito ◽  
Tânia Martins ◽  
Rui Medeiros ◽  
...  

Penile cancer is an uncommon malignancy that occurs most frequently in developing countries. Two pathways for penile carcinogenesis are currently recognized: one driven by human papillomavirus (HPV) infection and another HPV-independent route, associated with chronic inflammation. Progress on the clinical management of this disease has been slow, partly due to the lack of preclinical models for translational research. However, exciting recent developments are changing this landscape, with new in vitro and in vivo models becoming available. These include mouse models for HPV+ and HPV− penile cancer and multiple cell lines representing HPV− lesions. The present review addresses these new advances, summarizing available models, comparing their characteristics and potential uses and discussing areas that require further improvement. Recent breakthroughs achieved using these models are also discussed, particularly those developments pertaining to HPV-driven cancer. Two key aspects that still require improvement are the establishment of cell lines that can represent HPV+ penile carcinomas and the development of mouse models to study metastatic disease. Overall, the growing array of in vitro and in vivo models for penile cancer provides new and useful tools for researchers in the field and is expected to accelerate pre-clinical research on this disease.


2010 ◽  
Vol 42 (2) ◽  
pp. 310-316 ◽  
Author(s):  
Stephanie L. Pierce ◽  
William Kutschke ◽  
Rafael Cabeza ◽  
Sarah K. England

Transgenic and knockout mouse models have proven useful in the study of genes necessary for parturition—including genes that affect the timing and/or progression of labor contractions. However, taking full advantage of these models will require a detailed characterization of the contractile patterns in the mouse uterus. Currently the best methodology for this has been measurement of isometric tension in isolated muscle strips in vitro. However, this methodology does not provide a real-time measure of changes in uterine pressure over the course of pregnancy. Recent advances have opened the possibility of using radiotelemetric devices to more accurately and comprehensively study intrauterine pressure in vivo. We tested the effectiveness of this technology in the mouse, in both wild-type (WT) mice and a mouse model of defective parturition (SK3 channel-overexpressing mice), after surgical implant of telemetry transmitters into the uterine horn. Continuous recordings from day 18 of pregnancy through delivery revealed that WT mice typically deliver during the 12-h dark cycle after 19.5 days postcoitum. In these mice, intrauterine pressure gradually increases during this cycle, to threefold greater than that measured during the 12-h cycle before delivery. SK3-overexpressing mice, by contrast, exhibited lower intrauterine pressure over the same period. These results are consistent with the outcome of previous in vitro studies, and they indicate that telemetry is an accurate method for measuring uterine contraction, and hence parturition, in mice. The use of this technology will lead to important novel insights into changes in intrauterine pressure during the course of pregnancy.


2018 ◽  
Vol 62 (10) ◽  
Author(s):  
James D. Blanchard ◽  
Valerie Elias ◽  
David Cipolla ◽  
Igor Gonda ◽  
Luiz E. Bermudez

ABSTRACT Nontuberculous mycobacteria (NTM) affect an increasing number of individuals worldwide. Infection with these organisms is more common in patients with chronic lung conditions, and treatment is challenging. Quinolones, such as ciprofloxacin, have been used to treat patients, but the results have not been encouraging. In this report, we evaluate novel formulations of liposome-encapsulated ciprofloxacin (liposomal ciprofloxacin) in vitro and in vivo. Its efficacy against Mycobacterium avium and Mycobacterium abscessus was examined in macrophages, in biofilms, and in vivo using intranasal instillation mouse models. Liposomal ciprofloxacin was significantly more active than free ciprofloxacin against both pathogens in macrophages and biofilms. When evaluated in vivo, treatment with the liposomal ciprofloxacin formulations was associated with significant decreases in the bacterial loads in the lungs of animals infected with M. avium and M. abscessus. In summary, topical delivery of liposomal ciprofloxacin in the lung at concentrations greater than those achieved in the serum can be effective in the treatment of NTM, and further evaluation is warranted.


2018 ◽  
Vol 115 (44) ◽  
pp. E10370-E10378 ◽  
Author(s):  
Miranda L. Bernhardt ◽  
Paula Stein ◽  
Ingrid Carvacho ◽  
Christopher Krapp ◽  
Goli Ardestani ◽  
...  

The success of mammalian development following fertilization depends on a series of transient increases in egg cytoplasmic Ca2+, referred to as Ca2+ oscillations. Maintenance of these oscillations requires Ca2+ influx across the plasma membrane, which is mediated in part by T-type, CaV3.2 channels. Here we show using genetic mouse models that TRPM7 channels are required to support this Ca2+ influx. Eggs lacking both TRPM7 and CaV3.2 stop oscillating prematurely, indicating that together they are responsible for the majority of Ca2+ influx immediately following fertilization. Fertilized eggs lacking both channels also frequently display delayed resumption of Ca2+ oscillations, which appears to require sperm–egg fusion. TRPM7 and CaV3.2 channels almost completely account for Ca2+ influx observed following store depletion, a process previously attributed to canonical store-operated Ca2+ entry mediated by STIM/ORAI interactions. TRPM7 serves as a membrane sensor of extracellular Mg2+ and Ca2+ concentrations and mediates the effects of these ions on Ca2+ oscillation frequency. When bred to wild-type males, female mice carrying eggs lacking TRPM7 and CaV3.2 are subfertile, and their offspring have increased variance in postnatal weight. These in vivo findings confirm previous observations linking in vitro experimental alterations in Ca2+ oscillatory patterns with developmental potential and offspring growth. The identification of TRPM7 and CaV3.2 as key mediators of Ca2+ influx following fertilization provides a mechanistic basis for the rational design of culture media that optimize developmental potential in research animals, domestic animals, and humans.


2011 ◽  
pp. 141-151
Author(s):  
Daniele Santini ◽  
Maria Elisabetta Fratto ◽  
Bruno Vincenzi ◽  
Silvia Angeletti ◽  
Giordano Dicuonzo ◽  
...  

Bisphosphonate therapy has become a standard of therapy for patients with malignant bone disease. In vivo pre-clinical data suggest that bisphosphonates may exert an antitumor effect and preliminary clinical data show promising activity on metastatic disease in cancer patients. This review will describe the pre-clinical evidence of action of bisphosphonates on osteoclasts and tumor cells, in both in vitro and animal models. In addition, the effects of principal bisphosphonates on skeletal disease progression in patients with cancers in different sites, including breast cancer, prostate cancer and non-small cell lung cancer will be reported. The preliminary clinical data from retrospective trials on the effect of bisphosphonates on survival will be described and the ongoing adjuvant phase III trial will be analyzed. This review will describe the preliminary clinical evidences from prospective studies on the effect of zoledronic acid treatment on the prevention of bone metastases.


Author(s):  
Adrian Rafael Murillo-de-Ozores ◽  
Alejandro Rodriguez-Gama ◽  
Hector Carbajal-Contreras ◽  
Gerardo Gamba ◽  
Maria Castaneda-Bueno

With No Lysine (K) kinase 4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule (DCT) of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that cause Familial Hyperkalemic Hypertension (FHHt). This disease is mainly driven by increased downstream activation of the Ste20-related Proline Alanine Rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1)-NCC pathway, which increases salt reabsorption in the DCT and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ki-Sun Park ◽  
Beenish Rahat ◽  
Hyung Chul Lee ◽  
Zu-Xi Yu ◽  
Jacob Noeker ◽  
...  

Maternal loss of imprinting (LOI) at the H19/IGF2 locus results in biallelic IGF2 and reduced H19 expression and is associated with Beckwith-Wiedemann syndrome (BWS). We use mouse models for LOI to understand the relative importance of Igf2 and H19 mis-expression in BWS phenotypes. Here we focus on cardiovascular phenotypes and show that neonatal cardiomegaly is exclusively dependent on increased Igf2. Circulating IGF2 binds cardiomyocyte receptors to hyperactivate mTOR signaling, resulting in cellular hyperplasia and hypertrophy. These Igf2-dependent phenotypes are transient: cardiac size returns to normal once Igf2 expression is suppressed postnatally. However, reduced H19 expression is sufficient to cause progressive heart pathologies including fibrosis and reduced ventricular function. In the heart, H19 expression is primarily in endothelial cells (ECs) and regulates EC differentiation both, in vivo and in vitro. Finally, we establish novel mouse models to show that cardiac phenotypes depend on H19 lncRNA interactions with Mirlet7 microRNAs.


Sign in / Sign up

Export Citation Format

Share Document