Distribution of hyaluronan in the epiphysial growth plate: turnover by CD44-expressing osteoprogenitor cells

1994 ◽  
Vol 107 (10) ◽  
pp. 2669-2677 ◽  
Author(s):  
P. Pavasant ◽  
T.M. Shizari ◽  
C.B. Underhill

In the present study, we have examined the distribution of both hyaluronan and its receptor, CD44, during the process of endochondral ossification in the mouse tibia. Histochemical staining revealed that a large amount of hyaluronan was present in the lacunae located in the zone of hypertrophy, but it was greatly reduced or absent from the zone of erosion. In addition, hyaluronan was present in the cytoplasm of osteoprogenitor cells located in the zone of erosion. These cells also expressed CD44 on their surfaces, as revealed by double-label immunohistochemistry. These results suggested that the osteoprogenitor cells may use CD44 to bind and internalize hyaluronan, and subsequently degrade it with lysosomal enzymes. To test this possibility, we examined the human cell line, MG-63, which closely resembles osteoprogenitor cells. These cells produced several different forms of CD44, as determined by western blotting (85, 116 and 150 kDa). In addition, the binding of isotopically labeled hyaluronan to detergent extracts of these cells was blocked by a monoclonal antibody to CD44. Similarly, the degradation of hyaluronan by these cultured cells was also inhibited by a monoclonal antibody to CD44. To determine if these cells could remove hyaluronan from the growth plate, the cells were cultured directly on top of thin sections of the epiphysial region of long bone. After 16 hours, the sections were stained for hyaluronan. The MG-63 cells removed significant amounts of hyaluronan present in the zone of hypertrophy, and this effect was blocked by an excess of soluble hyaluronan and by a monoclonal antibody to CD44.(ABSTRACT TRUNCATED AT 250 WORDS)

1992 ◽  
Vol 40 (6) ◽  
pp. 827-838 ◽  
Author(s):  
M P Mark ◽  
T Tsuji ◽  
J Portoukalian ◽  
A Rebbaa ◽  
G Zidan ◽  
...  

A monoclonal IgM (MC22-33F), raised in response to mouse embryonic dental papilla cells, was selected for further analysis on the basis of the unusual resistance of its epitope to detergent extractions and protease treatments of cell cultures. Binding of MC22-33F to cultured cells was abolished after either pre-treatment of the cells with phospholypase C or pre-incubation of the hybridoma culture supernatant with multilamellar phosphatidylcholine-containing vesicles. MC22-33F reacted with phosphatidylcholine, with the phosphatidylcholine analogue dimethylphosphatidylethanolamine, and with sphingomyelin immobilized on polystyrene surfaces or in thin-layer chromatograms. Crossreaction with other phospholipids was not observed. The surface of cultured epithelial cells was labeled by MC22-33F at sites of bleb formation. Combining immunostaining by MC22-33F and histochemical staining of cultured cells revealed codistribution of phospholipid-containing inclusions with either lysosomes or neutral fat droplets, and inhibition of lipid degradation by kanamycin resulted in a parallel accumulation of these inclusions and of neutral fats in the cytoplasm. Immunolabeling by MC22-33F of frozen mouse tissues was maximal in fat-storing and steroid-producing cells. Extracellular phospholipids present in calcifying cartilage septa strongly reacted with MC22-33F. This monoclonal antibody offers an interesting alternative to histochemical lipid stains for investigating fatty metamorphosis and extracellular lipid deposition under physiological and pathological conditions.


2021 ◽  
Vol 11 (12) ◽  
pp. 2337-2345
Author(s):  
Junhui Lai ◽  
Qin Yang ◽  
Ruining Liang ◽  
Weijun Guan ◽  
Xiuxia Li

The growth plate is essential in long bone formation and contains a wealth of skeletal stem cells (SSCs). Though the origin and the mechanism for SSCs generation remain uncertain, recent studies demonstrate the transition from cartilage to bone that in the lineage for bone development. SSCs possesses the ability to differentiate into bone and cartilage in vitro. In this research, we aimed to isolate and culture the skeletal stem cells from bovine cattle and then studied its biological characterization. The results showed that these bovine SSCs are positive for PDPN+CD73+CD164+CD90+CD44+ cell surface bio-markers, they are capable of self-renewal and differentiation. Our dates proved that SSCs exists in bovine’s long bone.


2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Aušra Domanska ◽  
Justin W. Flatt ◽  
Joonas J. J. Jukonen ◽  
James A. Geraets ◽  
Sarah J. Butcher

ABSTRACTHuman parechovirus 3 (HPeV3) infection is associated with sepsis characterized by significant immune activation and subsequent tissue damage in neonates. Strategies to limit infection have been unsuccessful due to inadequate molecular diagnostic tools for early detection and the lack of a vaccine or specific antiviral therapy. Toward the latter, we present a 2.8-Å-resolution structure of HPeV3 in complex with fragments from a neutralizing human monoclonal antibody, AT12-015, using cryo-electron microscopy (cryo-EM) and image reconstruction. Modeling revealed that the epitope extends across neighboring asymmetric units with contributions from capsid proteins VP0, VP1, and VP3. Antibody decoration was found to block binding of HPeV3 to cultured cells. Additionally, at high resolution, it was possible to model a stretch of RNA inside the virion and, from this, identify the key features that drive and stabilize protein-RNA association during assembly.IMPORTANCEHuman parechovirus 3 (HPeV3) is receiving increasing attention as a prevalent cause of sepsis-like symptoms in neonates, for which, despite the severity of disease, there are no effective treatments available. Structural and molecular insights into virus neutralization are urgently needed, especially as clinical cases are on the rise. Toward this goal, we present the first structure of HPeV3 in complex with fragments from a neutralizing monoclonal antibody. At high resolution, it was possible to precisely define the epitope that, when targeted, prevents virions from binding to cells. Such an atomic-level description is useful for understanding host-pathogen interactions and viral pathogenesis mechanisms and for finding potential cures for infection and disease.


2019 ◽  
Author(s):  
Ugur M. Ayturk ◽  
Joseph P. Scollan ◽  
Alexander Vesprey ◽  
Christina M. Jacobsen ◽  
Paola Divieti Pajevic ◽  
...  

ABSTRACTSingle cell RNA-seq (scRNA-seq) is emerging as a powerful technology to examine transcriptomes of individual cells. We determined whether scRNA-seq could be used to detect the effect of environmental and pharmacologic perturbations on osteoblasts. We began with a commonly used in vitro system in which freshly isolated neonatal mouse calvarial cells are expanded and induced to produce a mineralized matrix. We used scRNA-seq to compare the relative cell type abundances and the transcriptomes of freshly isolated cells to those that had been cultured for 12 days in vitro. We observed that the percentage of macrophage-like cells increased from 6% in freshly isolated calvarial cells to 34% in cultured cells. We also found that Bglap transcripts were abundant in freshly isolated osteoblasts but nearly undetectable in the cultured calvarial cells. Thus, scRNA-seq revealed significant differences between heterogeneity of cells in vivo and in vitro. We next performed scRNA-seq on freshly recovered long bone endocortical cells from mice that received either vehicle or Sclerostin-neutralizing antibody for 1 week. Bone anabolism-associated transcripts were also not significantly increased in immature and mature osteoblasts recovered from Sclerostin-neutralizing antibody treated mice; this is likely a consequence of being underpowered to detect modest changes in gene expression, since only 7% of the sequenced endocortical cells were osteoblasts, and a limited portion of their transcriptomes were sampled. We conclude that scRNA-seq can detect changes in cell abundance, identity, and gene expression in skeletally derived cells. In order to detect modest changes in osteoblast gene expression at the single cell level in the appendicular skeleton, larger numbers of osteoblasts from endocortical bone are required.


Blood ◽  
1986 ◽  
Vol 67 (6) ◽  
pp. 1542-1549 ◽  
Author(s):  
AF Gazdar ◽  
HK Oie ◽  
IR Kirsch ◽  
GF Hollis

Using a serum-free defined medium, we have established a human cell line, NCI-H929, from a malignant effusion occurring in a patient with IgAk myeloma. The cultured cells have the morphologic, ultrastructural, biochemical, immunologic, and cytochemical features of plasma cells. The cells have rearranged alpha and kappa genes and synthesize and secrete high amounts of IgAk (greater than 80 micrograms/10(6) cells per 24 hours). The cells express surface immunoglobulin (alpha and kappa), the plasma cell antigen PCA-1, the transferrin receptor (T9) and T10 but lack antigens associated with earlier stages of B cell development (HLA-DR, B1, B2, B4, CALLA), as well as other leukocyte- macrophage antigens and Epstein-Barr virus (EBV) nuclear antigen. Although molecular studies confirm that both the tumor and cultured cells are derived from the same clone of malignant B cells, the tumor cells were predominantly near-diploid, whereas the cultured cells are predominantly near-tetraploid with six copies of chromosome 8, four to six of which have an 8q + abnormality. However, both the tumor and the cultured cells have a rearrangement of the cellular c-myc proto- oncogene (located at 8q24) and express c-myc RNA. Although a modest number of human “plasmacytoid” cell lines have been established, most are lymphoblastoid lines lacking plasma cell features, while others appear to be early secretory cells. In contrast, NCI-H929 is a differentiated, highly secretory human plasma cell line.


2019 ◽  
Author(s):  
Holly Dupuis ◽  
Michael Andrew Pest ◽  
Ermina Hadzic ◽  
Thin Xuan Vo ◽  
Daniel B. Hardy ◽  
...  

AbstractLongitudinal bone growth occurs through endochondral ossification (EO), controlled by various signaling molecules. Retinoid X Receptor (RXR) is a nuclear receptor with important roles in cell death, development, and metabolism. However, little is known about its role in EO. In this study, the agonist SR11237 was used to evaluate RXR activation on EO.Rats given SR11237 from post-natal day 5 to 15 were harvested for micro-computed tomography scanning and histology. In parallel, newborn CD1 mouse tibiae were cultured with increasing concentrations of SR11237 for histological and whole mount evaluation.RXR agonist-treated rats were smaller than controls, and developed dysmorphia of the growth plate. Cells invading the calcified and dysmorphic growth plate appeared pre-hypertrophic in size and shape corresponding with P57 immunostaining. Additionally, SOX9 positive cells were found surrounding the calcified tissue. The epiphysis of SR11237 treated bones showed increased TRAP staining, and additional TUNEL staining at the osteo-chondral junction. MicroCT revealed morphological disorganization in the long bones of treated animals. Isolated mouse long bones treated with SR11237 grew significantly less than their DMSO controls.This study demonstrates that stimulation of the RXR receptor causes irregular ossification, premature closure of the growth plate, and disrupted long bone growth in rodent models.


1993 ◽  
Vol 104 (2) ◽  
pp. 391-398
Author(s):  
A. Koutoulis ◽  
M. Ludwig ◽  
R. Wetherbee

Monoclonal antibodies have been generated against cell surface components of the unicellular phytoflagellate Apedinella radians (Pedinellophyceae). One monoclonal antibody, designated Arg 1E5/1B1, labels a scale associated protein (SAP) of 145 kDa. Immunofluorescence microscopy of whole cells as well as immunoelectron microscopy of whole cell mounts and thin sections using Arg 1E5/1B1 have shown that the SAP is located on the proximal surface of body scales and spine-scales. Its specific location suggests that the SAP may play a role in the adhesion of these surface components to the cell membrane and/or to one another. The potential of monoclonal antibody Arg 1E5/1B1 as a tool to study cell surface morphogenesis and the role of the endomembrane system in A. radians is discussed.


2021 ◽  
Vol 40 (6) ◽  
pp. 261-265
Author(s):  
Tomoyuki Nakano ◽  
Toshiaki Tanaka ◽  
Fumio Sakane ◽  
Mika K. Kaneko ◽  
Yukinari Kato ◽  
...  

2015 ◽  
Vol 32 (7) ◽  
pp. 2439-2449 ◽  
Author(s):  
Crystal Sao-Fong Cheung ◽  
Zhongyu Zhu ◽  
Julian Chun-Kin Lui ◽  
Dimiter Dimitrov ◽  
Jeffrey Baron

1987 ◽  
Vol 171 (2) ◽  
pp. 284-295 ◽  
Author(s):  
Mark C. Willingham ◽  
Nancy D. Richert ◽  
Angelina V. Rutherford

Sign in / Sign up

Export Citation Format

Share Document