The role of anillin in meiotic cytokinesis of Drosophila males

1999 ◽  
Vol 112 (14) ◽  
pp. 2323-2334 ◽  
Author(s):  
M.G. Giansanti ◽  
S. Bonaccorsi ◽  
M. Gatti

Anillin is a 190 kDa actin-binding protein that concentrates in the leading edges of furrow canals during Drosophila cellularization and in the cleavage furrow of both somatic and meiotic cells. We analyzed anillin behavior during D. melanogaster spermatogenesis, and focused on the relationships between this protein and the F-actin enriched structures. In meiotic anaphases anillin concentrates in a narrow band around the cell equator. Cytological analysis of wild-type meiosis and examination of mutants defective in contractile ring assembly (chickadee and KLP3A), revealed that the formation of the anillin cortical band occurs before, and does not require the assembly of the F-actin based contractile ring. However, once the acto-myosin ring is assembled, the anillin band precisely colocalizes with this cytokinetic structure, accompanying its contraction throughout anaphase and telophase. In chickadee and KLP3A mutant ana-telophases the cortical anillin band fails to constrict, indicating that its contraction is normally driven by the cytokinetic ring. These findings, coupled with the analysis of anillin behavior in twinstar mutants, suggested a model on the role of anillin during cytokinesis. During anaphase anillin would concentrate in the cleavage furrow before the assembly of the contractile ring, binding the equatorial cortex, perhaps through its carboxy-terminal pleckstrin homology (PH) domain. Anillin would then interact with the actin filaments of the acto-myosin ring through its actin-binding domain, anchoring the contractile ring to the plasma membrane throughout cytokinesis.

Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 84-84
Author(s):  
Velia M. Fowler ◽  
Zhenhua Sui ◽  
Roberta B. Nowak ◽  
Nancy E. Kim ◽  
Andrea Bacconi

Abstract Abstract 84 Tropomodulin1 (Tmod1) binds tropomyosin and caps the pointed ends of the short actin filaments in the spectrin-actin network of red blood cells (RBCs). Tmod1-null mice display a mild sphero-elliptocytic anemia due to mis-regulation of actin filament lengths and a disrupted membrane skeleton. The mild phenotype may be explained by the compensation of Tmod3, which is not found in wild-type RBCs but exists in Tmod1-null RBCs (one-fifth level of Tmod1). Our experiments with human erythroblasts show that the expression of Tmod1 increases during terminal differentiation while the level of Tmod3 is relatively constant, only decreasing at a very late stage. To investigate the role of Tmod3 in RBCs, we created a Tmod3 knockout mouse from ES cells (#RRF004, BayGenomics) with a gene-trap vector insertion into intron 1 of Tmod3. Both RT-PCR and western-blot results show that the expression of Tmod3 is abolished in Tmod3−/− mice. Tmod3+/− mice are viable and fertile, while Tmod3−/− animals are embryonic lethal, with most nulls dying between E16.5-E17.5. Tmod3−/− embryos are pale and anemic with a smaller fetal liver, suggesting that the lethality might be due to defective definitive erythropoiesis. This is supported by analysis of peripheral blood, which shows fewer definitive enucleated erythroblasts in Tmod3-null embryos. Flow-cytometry of fetal liver erythroblasts labeled with Ter119 and CD71 indicates that the late stage R3 population is reduced by about one-third in absence of Tmod3, while R1-R2 populations are somewhat increased. In addition, Annexin V staining shows a two-fold increase in apoptotic cells in the fetal liver, most of which are in the R1 population. Measurement of enucleation frequency in R populations shows a marked reduction of enucleated cells as the erythroblasts mature through the R3-R5 populations. These data indicate that definitive erythropoiesis is defective due to impaired erythroblast terminal differentiation in absence of Tmod3. To determine the underlying mechanisms, we used histology and confocal fluorescence microscopy to investigate the morphology and actin cytoskeleton of erythroblasts in process of enucleation. These experiments show abnormal nuclear morphology in orthochromatic Tmod3-null fetal liver erythroblasts, as well as defective F-actin contractile ring assembly in Tmod3−/− erythroblasts in process of nuclear expulsion, suggesting a role for Tmod3 in enucleation. Since macrophages are required for production of definitive erythroblasts and enucleation in vivo, we explored the role of macrophages in the Tmod3−/− phenotype. Immunofluorescence staining of fetal liver cryosections with F4/80, Ter119 and Hoechst reveals that macrophages display strikingly less dendritic morphologies in the Tmod3−/− mice, with macrophages sometimes containing Ter119-positive nucleated erythroblasts. Isolation of native erythroblast-macrophage islands from fetal liver demonstrates that islands isolated from Tmod3−/− fetal livers contain fewer erythroblasts compared with those from wild-type fetal liver. Further, reconstitution experiments indicate that erythroblasts from Tmod3−/− fetal liver are unable to form normal islands, indicating that Tmod3 function is required in erythroblasts. In conclusion, our study shows that knockout of Tmod3 leads to defective definitive erythropoiesis and embryonic lethality in mice, due to defects in island formation and abnormal enucleation. These data suggest that Tmod3-mediated actin remodeling may be required for erythroblast-macrophage adhesion as well as contractile ring assembly during erythroblast enucleation. Disclosures: No relevant conflicts of interest to declare.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


1991 ◽  
Vol 11 (7) ◽  
pp. 3603-3612 ◽  
Author(s):  
S Marcus ◽  
G A Caldwell ◽  
D Miller ◽  
C B Xue ◽  
F Naider ◽  
...  

We have undertaken total synthesis of the Saccharomyces cerevisiae a-factor (NH2-YIIKGVFWDPAC[S-farnesyl]-COOCH3) and several Cys-12 analogs to determine the significance of S-farnesylation and carboxy-terminal methyl esterification to the biological activity of this lipopeptide mating pheromone. Replacement of either the farnesyl group or the carboxy-terminal methyl ester by a hydrogen atom resulted in marked reduction but not total loss of bioactivity as measured by a variety of assays. Moreover, both the farnesyl and methyl ester groups could be replaced by other substituents to produce biologically active analogs. The bioactivity of a-factor decreased as the number of prenyl units on the cysteine sulfur decreased from three to one, and an a-factor analog having the S-farnesyl group replaced by an S-hexadecanyl group was more active than an S-methyl a-factor analog. Thus, with two types of modifications, a-factor activity increased as the S-alkyl group became bulkier and more hydrophobic. MATa cells having deletions of the a-factor structural genes (mfal1 mfa2 mutants) were capable of mating with either sst2 or wild-type MAT alpha cells in the presence of exogenous a-factor, indicating that it is not absolutely essential for MATa cells to actively produce a-factor in order to mate. Various a-factor analogs were found to partially restore mating to these strains as well, and their relative activities in the mating restoration assay were similar to their activities in the other assays used in this study. Mating was not restored by addition of exogenous a-factor to a cross of a wild-type MAT alpha strain and a MATaste6 mutant, indicating a role of the STE6 gene product in mating in addition to its secretion of a-factor.


2002 ◽  
Vol 13 (11) ◽  
pp. 3811-3821 ◽  
Author(s):  
Pauli J. Ojala ◽  
Ville O. Paavilainen ◽  
Maria K. Vartiainen ◽  
Roman Tuma ◽  
Alan G. Weeds ◽  
...  

Twinfilin is a ubiquitous and abundant actin monomer–binding protein that is composed of two ADF-H domains. To elucidate the role of twinfilin in actin dynamics, we examined the interactions of mouse twinfilin and its isolated ADF-H domains with G-actin. Wild-type twinfilin binds ADP-G-actin with higher affinity (K D = 0.05 μM) than ATP-G-actin (K D = 0.47 μM) under physiological ionic conditions and forms a relatively stable (k off = 1.8 s−1) complex with ADP-G-actin. Data from native PAGE and size exclusion chromatography coupled with light scattering suggest that twinfilin competes with ADF/cofilin for the high-affinity binding site on actin monomers, although at higher concentrations, twinfilin, cofilin, and actin may also form a ternary complex. By systematic deletion analysis, we show that the actin-binding activity is located entirely in the two ADF-H domains of twinfilin. Individually, these domains compete for the same binding site on actin, but the C-terminal ADF-H domain, which has >10-fold higher affinity for ADP-G-actin, is almost entirely responsible for the ability of twinfilin to increase the amount of monomeric actin in cosedimentation assays. Isolated ADF-H domains associate with ADP-G-actin with rapid second-order kinetics, whereas the association of wild-type twinfilin with G-actin exhibits kinetics consistent with a two-step binding process. These data suggest that the association with an actin monomer induces a first-order conformational change within the twinfilin molecule. On the basis of these results, we propose a kinetic model for the role of twinfilin in actin dynamics and its possible function in cells.


2005 ◽  
Vol 172 (1) ◽  
pp. 41-53 ◽  
Author(s):  
Melissa Crisp ◽  
Qian Liu ◽  
Kyle Roux ◽  
J.B. Rattner ◽  
Catherine Shanahan ◽  
...  

The nuclear envelope defines the barrier between the nucleus and cytoplasm and features inner and outer membranes separated by a perinuclear space (PNS). The inner nuclear membrane contains specific integral proteins that include Sun1 and Sun2. Although the outer nuclear membrane (ONM) is continuous with the endoplasmic reticulum, it is nevertheless enriched in several integral membrane proteins, including nesprin 2 Giant (nesp2G), an 800-kD protein featuring an NH2-terminal actin-binding domain. A recent study (Padmakumar, V.C., T. Libotte, W. Lu, H. Zaim, S. Abraham, A.A. Noegel, J. Gotzmann, R. Foisner, and I. Karakesisoglou. 2005. J. Cell Sci. 118:3419–3430) has shown that localization of nesp2G to the ONM is dependent upon an interaction with Sun1. In this study, we confirm and extend these results by demonstrating that both Sun1 and Sun2 contribute to nesp2G localization. Codepletion of both of these proteins in HeLa cells leads to the loss of ONM-associated nesp2G, as does overexpression of the Sun1 lumenal domain. Both treatments result in the expansion of the PNS. These data, together with those of Padmakumar et al. (2005), support a model in which Sun proteins tether nesprins in the ONM via interactions spanning the PNS. In this way, Sun proteins and nesprins form a complex that links the nucleoskeleton and cytoskeleton (the LINC complex).


2020 ◽  
Vol 88 (5) ◽  
Author(s):  
Susmita Ghosh ◽  
Elizabeth A. Ruelke ◽  
Joshua C. Ferrell ◽  
Maria D. Bodero ◽  
Kenneth A. Fields ◽  
...  

ABSTRACT The translocated actin recruiting phosphoprotein (Tarp) is a multidomain type III secreted effector used by Chlamydia trachomatis. In aggregate, existing data suggest a role of this effector in initiating new infections. As new genetic tools began to emerge to study chlamydial genes in vivo, we speculated as to what degree Tarp function contributes to Chlamydia’s ability to parasitize mammalian host cells. To address this question, we generated a complete tarP deletion mutant using the fluorescence-reported allelic exchange mutagenesis (FRAEM) technique and complemented the mutant in trans with wild-type tarP or mutant tarP alleles engineered to harbor in-frame domain deletions. We provide evidence for the significant role of Tarp in C. trachomatis invasion of host cells. Complementation studies indicate that the C-terminal filamentous actin (F-actin)-binding domains are responsible for Tarp-mediated invasion efficiency. Wild-type C. trachomatis entry into HeLa cells resulted in host cell shape changes, whereas the tarP mutant did not. Finally, using a novel cis complementation approach, C. trachomatis lacking tarP demonstrated significant attenuation in a murine genital tract infection model. Together, these data provide definitive genetic evidence for the critical role of the Tarp F-actin-binding domains in host cell invasion and for the Tarp effector as a bona fide C. trachomatis virulence factor.


2010 ◽  
Vol 84 (14) ◽  
pp. 7039-7052 ◽  
Author(s):  
Barbara Kropff ◽  
Yvonne Koedel ◽  
William Britt ◽  
Michael Mach

ABSTRACT Envelopment of a herpesvirus particle is a complex process of which much is still to be learned. We previously identified the glycoprotein gpUL132 of human cytomegalovirus (HCMV) as an envelope component of the virion. In its carboxy-terminal portion, gpUL132 contains at least four motifs for sorting of transmembrane proteins to endosomes; among them are one dileucine-based signal and three tyrosine-based signals of the YXXØ and NPXY (where X stands for any amino acid, and Ø stands for any bulky hydrophobic amino acid) types. To investigate the role of each of these trafficking signals in intracellular localization and viral replication, we constructed a panel of expression plasmids and recombinant viruses in which the signals were rendered nonfunctional by mutagenesis. In transfected cells wild-type gpUL132 was mainly associated with the trans-Golgi network. Consecutive mutation of the trafficking signals resulted in increasing fractions of the protein localized at the cell surface, with gpUL132 mutated in all four trafficking motifs predominantly associated with the plasma membrane. Concomitant with increased surface expression, endocytosis of mutant gpUL132 was reduced, with a gpUL132 expressing all four motifs in mutated form being almost completely impaired in endocytosis. The replication of recombinant viruses harboring mutations in single trafficking motifs was comparable to replication of wild-type virus. In contrast, viruses containing mutations in three or four of the trafficking signals showed pronounced deficits in replication with a reduction of approximately 100-fold. Moreover, recombinant viruses expressing gpUL132 with three or four trafficking motifs mutated failed to incorporate the mutant protein into the virus particle. These results demonstrate a role of endocytosis of an HCMV envelope glycoprotein for incorporation into the virion and optimal virus replication.


1990 ◽  
Vol 111 (3) ◽  
pp. 1069-1079 ◽  
Author(s):  
M V de Arruda ◽  
S Watson ◽  
C S Lin ◽  
J Leavitt ◽  
P Matsudaira

Fimbrin is an actin-bundling protein found in intestinal microvilli, hair cell stereocilia, and fibroblast filopodia. The complete protein sequence (630 residues) of chicken intestine fimbrin has been determined from two full-length cDNA clones. The sequence encodes a small amino-terminal domain (115 residues) that is homologous with two calcium-binding sites of calmodulin and a large carboxy-terminal domain (500 residues) consisting of a fourfold-repeated 125-residue sequence. This repeat is homologous with the actin-binding domain of alpha-actinin and the amino-terminal domains of dystrophin, actin-gelation protein, and beta-spectrin. The presence of this duplicated domain in fimbrin links actin bundling proteins and gelation proteins into a common family of actin cross-linking proteins. Fimbrin is also homologous in sequence with human L-plastin and T-plastin. L-plastin is found in only normal or transformed leukocytes where it becomes phosphorylated in response to IL 1 or phorbol myristate acetate. T-plastin is found in cells of solid tissues where it does not become phosphorylated. Neoplastic cells derived from solid tissues express both isoforms. The differences in expression, sequence, and phosphorylation suggest possible functional differences between fimbrin isoforms.


2009 ◽  
Vol 20 (6) ◽  
pp. 1618-1628 ◽  
Author(s):  
Alastair S. Robertson ◽  
Ellen G. Allwood ◽  
Adam P.C. Smith ◽  
Fiona C. Gardiner ◽  
Rosaria Costa ◽  
...  

Actin plays an essential role in many eukaryotic cellular processes, including motility, generation of polarity, and membrane trafficking. Actin function in these roles is regulated by association with proteins that affect its polymerization state, dynamics, and organization. Numerous proteins have been shown to localize with cortical patches of yeast actin during endocytosis, but the role of many of these proteins remains poorly understood. Here, we reveal that the yeast protein Ysc84 represents a new class of actin-binding proteins, conserved from yeast to humans. It contains a novel N-terminal actin-binding domain termed Ysc84 actin binding (YAB), which can bind and bundle actin filaments. Intriguingly, full-length Ysc84 alone does not bind to actin, but binding can be activated by a specific motif within the polyproline region of the yeast WASP homologue Las17. We also identify a new monomeric actin-binding site on Las17. Together, the polyproline region of Las17 and Ysc84 can promote actin polymerization. Using live cell imaging, kinetics of assembly and disassembly of proteins at the endocytic site were analyzed and reveal that loss of Ysc84 and its homologue Lsb3 decrease inward movement of vesicles consistent with a role in actin polymerization during endocytosis.


1990 ◽  
Vol 97 (2) ◽  
pp. 297-306
Author(s):  
B. Zurek ◽  
J.M. Sanger ◽  
J.W. Sanger ◽  
B.M. Jockusch

The role of myosin filaments during assembly and activity of microfilament rings was analyzed by microinjecting epitheloid cells (PtK2 and LLC-PK1 kidney cell lines) with specific anti-myosins. Six monoclonal antibodies directed against the light meromyosin (LMM) region of the myosin molecule were characterized with respect to epitope location, and their effects on actin-activated MgATPase as well as on assembly, structural integrity and stability of myosin filaments. All of these antibodies recognized LLC-PK1 myosin, but only three reacted with PtK2 myosin. The remaining three served as matching controls in experiments with this cell line. When injected in amounts sufficient to yield an excess of antibody over myosin, the reactive antibodies significantly delayed formation and constriction of the contractile ring in mitotic cells. These rings contained less myosin, but not less actin, than the controls. This indicates that the recruitment and alignment of actin in the cleavage furrow can occur independently of other components of the contractile ring. After completion of cytokinesis, the majority of the injected cells was unable to assemble a normal circumferential belt. This resulted in defective epitheloid sheets. Approximately one third of these cells showed grossly distorted cell shapes and an increase in locomotory activity. All these changes were fully reversible with time, suggesting that the effects of the antibodies were overcome by protein synthesis. The differential sensitivity seen between contractile rings and peripheral belts is discussed with respect to differences in their architecture, stability and proposed function.


Sign in / Sign up

Export Citation Format

Share Document