scholarly journals Distance-dependent cellular palmitoylation of de-novo-designed sequences and their translocation to plasma membrane subdomains

2002 ◽  
Vol 115 (15) ◽  
pp. 3119-3130 ◽  
Author(s):  
Inmaculada Navarro-Lérida ◽  
Alberto Álvarez-Barrientos ◽  
Francisco Gavilanes ◽  
Ignacio Rodriguez-Crespo

Using recursive PCR, we created an artificial protein sequence that consists of a consensus myristoylation motif (MGCTLS) followed by the triplet AGS repeated nine times and fused to the GFP reporter. This linker-GFP sequence was utilized as a base to produce multiple mutants that were used to transfect COS-7 cells. Constructs where a `palmitoylable' cysteine residue was progressively moved apart from the myristoylation site to positions 3, 9, 15 and 21 of the protein sequence were made, and these mutants were used to investigate the effect of protein myristoylation on subsequent palmitoylation,subcellular localization, membrane association and caveolin-1 colocalization. In all cases, dual acylation of the GFP chimeras correlated with translocation to Triton X-100-insoluble cholesterol/sphingomyelin-enriched subdomains. Whereas a strong Golgi labeling was observed in all the myristoylated chimeras, association with the plasma membrane was only observed in the dually acylated constructs. Taking into account the conflicting data regarding the existence and specificity of cellular palmitoyl-transferases, our results provide evidence that de-novo-designed sequences can be efficiently S-acylated with palmitic acid in vivo, strongly supporting the hypothesis that non-enzymatic protein palmitoylation can occur within mammalian cells. Additionally, this palmitoylation results in the translocation of the recombinant construct to low-fluidity domains in a myristate-palmitate distance-dependent manner.

1984 ◽  
Vol 98 (3) ◽  
pp. 904-910 ◽  
Author(s):  
W J Deery ◽  
A R Means ◽  
B R Brinkley

A Triton X-100-lysed cell system has been used to identify calmodulin on the cytoskeleton of 3T3 and transformed SV3T3 cells. By indirect immunofluorescence, calmodulin was found to be associated with both the cytoplasmic microtubule complex and the centrosomes. A number of cytoplasmic microtubules more resistant to disassembly upon either cold (0-4 degrees C) or hypotonic treatment, as well as following dilution have been identified. Most of the stable microtubules appeared to be associated with the centrosome at one end and with the plasma membrane at the other end. These microtubules could be induced to depolymerize, however, by micromolar Ca++ concentrations. These data suggest that, by interacting directly with the microtubule, calmodulin may influence microtubule assembly and ensure the Ca++-sensitivity of both mitotic and cytoplasmic microtubules.


2018 ◽  
Author(s):  
Luisa Pedro ◽  
Jacqueline D. Shields

AbstractPodoplanin, a highly O-glycosylated type-1 transmembrane glycoprotein, found in lymphatic endothelial cells, podocytes, alveolar epithelial cells and lymph node fibroblasts is also expressed by tumour cells, and is correlated with more aggressive disease. Despite numerous studies documenting podoplanin expression, the mechanisms underlying its tumour-promoting functions remain unclear. Using a murine melanoma cell line that endogenously expresses podoplanin, we demonstrate interactions with proteins necessary for cytoskeleton reorganization, adhesion and matrix degradation, and endocytosis/receptor recycling but also identify a novel interaction with caveolin-1. We generated a panel of podoplanin and caveolin-1 variants to determine the molecular interactions and functional consequences of these interactions. Complementary in vitro and in vivo systems confirmed the existence of a functional cooperation in which surface expression of both full length, signalling competent podoplanin and caveolin-1 are necessary to induce directional migration and invasion, which is executed via PAK1 and ERK1 pathways. Our findings establish that podoplanin signalling mediates the invasive properties of melanoma cells in a caveolin-1 dependent manner.Summary StatementThis manuscript describes a new interaction and functional cooperation between podoplanin and caveolin1 that drives tumour cell invasion into surrounding tissues.


2014 ◽  
Vol 205 (2) ◽  
pp. 217-232 ◽  
Author(s):  
Cortney C. Winkle ◽  
Leslie M. McClain ◽  
Juli G. Valtschanoff ◽  
Charles S. Park ◽  
Christopher Maglione ◽  
...  

Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.


2004 ◽  
Vol 279 (44) ◽  
pp. 45887-45896 ◽  
Author(s):  
Mark J. Demma ◽  
Serena Wong ◽  
Eugene Maxwell ◽  
Bimalendu Dasmahapatra

The p53 protein plays a major role in the maintenance of genome stability in mammalian cells. Mutations of p53 occur in over 50% of all cancers and are indicative of highly aggressive cancers that are hard to treat. Recently, there has been a high degree of interest in therapeutic approaches to restore growth suppression functions to mutant p53. Several compounds have been reported to restore wild type function to mutant p53. One such compound, CP-31398, has been shown effectivein vivo, but questions have arisen to whether it actually affects p53. Here we show that mutant p53, isolated from cells treated with CP-31398, is capable of binding to p53 response elementsin vitro. We also show the compound restores DNA-binding activity to mutant p53 in cells as determined by a chromatin immunoprecipitation assay. In addition, using purified p53 core domain from two different hotspot mutants (R273H and R249S), we show that CP-31398 can restore DNA-binding activity in a dose-dependent manner. Using a quantitative DNA binding assay, we also show that CP-31398 increases significantly the amount of mutant p53 that binds to cognate DNA (Bmax) and its affinity (Kd) for DNA. The compound, however, does not affect the affinity (Kdvalue) of wild type p53 for DNA and only increasesBmaxslightly. In a similar assay PRIMA1 does not have any effect on p53 core DNA-binding activity. We also show that CP-31398 had no effect on the DNA-binding activity of p53 homologs p63 and p73.


2003 ◽  
Vol 23 (6) ◽  
pp. 2151-2161 ◽  
Author(s):  
Jeffrey M. Masuda-Robens ◽  
Sara N. Kutney ◽  
Hongwei Qi ◽  
Margaret M. Chou

ABSTRACT The Rho family GTPases Cdc42 and Rac1 play fundamental roles in transformation and actin remodeling. Here, we demonstrate that the TRE17 oncogene encodes a component of a novel effector pathway for these GTPases. TRE17 coprecipitated specifically with the active forms of Cdc42 and Rac1 in vivo. Furthermore, the subcellular localization of TRE17 was dramatically regulated by these GTPases and mitogens. Under serum-starved conditions, TRE17 localized predominantly to filamentous structures within the cell. Epidermal growth factor (EGF) induced relocalization of TRE17 to the plasma membrane in a Cdc42-/Rac1-dependent manner. Coexpression of activated alleles of Cdc42 or Rac1 also caused complete redistribution of TRE17 to the plasma membrane, where it partially colocalized with the GTPases in filopodia and ruffles, respectively. Membrane recruitment of TRE17 by EGF or the GTPases was dependent on actin polymerization. Finally, we found that a C-terminal truncation mutant of TRE17 induced the accumulation of cortical actin, mimicking the effects of activated Cdc42. Together, these results identify TRE17 as part of a novel effector complex for Cdc42 and Rac1, potentially contributing to their effects on actin remodeling. The present study provides insights into the regulation and cellular function of this previously uncharacterized oncogene.


2004 ◽  
Vol 24 (17) ◽  
pp. 7483-7490 ◽  
Author(s):  
Andrew Grimson ◽  
Sean O'Connor ◽  
Carrie Loushin Newman ◽  
Philip Anderson

ABSTRACT Eukaryotic messenger RNAs containing premature stop codons are selectively and rapidly degraded, a phenomenon termed nonsense-mediated mRNA decay (NMD). Previous studies with both Caenohabditis elegans and mammalian cells indicate that SMG-2/human UPF1, a central regulator of NMD, is phosphorylated in an SMG-1-dependent manner. We report here that smg-1, which is required for NMD in C. elegans, encodes a protein kinase of the phosphatidylinositol kinase superfamily of protein kinases. We identify null alleles of smg-1 and demonstrate that SMG-1 kinase activity is required in vivo for NMD and in vitro for SMG-2 phosphorylation. SMG-1 and SMG-2 coimmunoprecipitate from crude extracts, and this interaction is maintained in smg-3 and smg-4 mutants, both of which are required for SMG-2 phosphorylation in vivo and in vitro. SMG-2 is located diffusely through the cytoplasm, and its location is unaltered in mutants that disrupt the cycle of SMG-2 phosphorylation. We discuss the role of SMG-2 phosphorylation in NMD.


1999 ◽  
Vol 10 (11) ◽  
pp. 3979-3990 ◽  
Author(s):  
Anastasiya D. Blagoveshchenskaya ◽  
Eric W. Hewitt ◽  
Daniel F. Cutler

One pathway in forming synaptic-like microvesicles (SLMV) involves direct budding from the plasma membrane, requires adaptor protein 2 (AP2) and is brefeldin A (BFA) resistant. A second route leads from the plasma membrane to an endosomal intermediate from which SLMV bud in a BFA-sensitive, AP3-dependent manner. Because AP3 has been shown to bind to a di-leucine targeting signal in vitro, we have investigated whether this major class of targeting signals is capable of directing protein traffic to SLMV in vivo. We have found that a di-leucine signal within the cytoplasmic tail of human tyrosinase is responsible for the majority of the targeting of HRP-tyrosinase chimeras to SLMV in PC12 cells. Furthermore, we have discovered that a Met-Leu di-hydrophobic motif within the extreme C terminus of synaptotagmin I supports 20% of the SLMV targeting of a CD4-synaptotagmin chimera. All of the traffic to the SLMV mediated by either di-Leu or Met-Leu is BFA sensitive, strongly suggesting a role for AP3 and possibly for an endosomal intermediate in this process. The differential reduction in SLMV targeting for HRP-tyrosinase and CD4-synaptotagmin chimeras by di-alanine substitutions or BFA treatment implies that different proteins use the two routes to the SLMV to differing extents.


2005 ◽  
Vol 16 (1) ◽  
pp. 231-237 ◽  
Author(s):  
Filippo Acconcia ◽  
Paolo Ascenzi ◽  
Alessio Bocedi ◽  
Enzo Spisni ◽  
Vittorio Tomasi ◽  
...  

A fraction of the nuclear estrogen receptor α (ERα) is localized to the plasma membrane region of 17β-estradiol (E2) target cells. We previously reported that ERα is a palmitoylated protein. To gain insight into the molecular mechanism of ERα residence at the plasma membrane, we tested both the role of palmitoylation and the impact of E2 stimulation on ERα membrane localization. The cancer cell lines expressing transfected or endogenous human ERα (HeLa and HepG2, respectively) or the ERα nonpalmitoylable Cys447Ala mutant transfected in HeLa cells were used as experimental models. We found that palmitoylation of ERα enacts ERα association with the plasma membrane, interaction with the membrane protein caveolin-1, and nongenomic activities, including activation of signaling pathways and cell proliferation (i.e., ERK and AKT activation, cyclin D1 promoter activity, DNA synthesis). Moreover, E2 reduces both ERα palmitoylation and its interaction with caveolin-1, in a time- and dose-dependent manner. These data point to the physiological role of ERα palmitoylation in the receptor localization to the cell membrane and in the regulation of the E2-induced cell proliferation.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Qiong Deng ◽  
Yong Wu ◽  
Zeng Zhang ◽  
Yue Wang ◽  
Minghua Li ◽  
...  

The nonclassical androgen signaling pathway translates signals into alterations in cellular function within minutes, and this action is proposed to be mediated by an androgen receptor (AR) localized to the plasma membrane. This study was designed to determine the mechanism underlying the membrane association of androgen receptor in TM4 cells, a mouse Sertoli cell line. Western blot analysis indicated testosterone-induced AR translocation to the cell membrane. Data from coimmunoprecipitation indicated that AR is associated with caveolin-1, and testosterone enhanced this association. Knockdown of caveolin-1 by shRNA decreased the amount of AR localized to membrane fraction and prevented AR membrane trafficking after being exposed to testosterone at physiological concentration. The palmitoylation inhibitor 2-bromopalmitate decreased AR membrane localization in basal condition and completely blocked testosterone-induced AR translocation to membrane fraction. These data suggested that AR localized to membrane fraction by binding with caveolin-1 through palmitoylation of the cysteine residue. This study provided a new evidence for AR membrane localization and its application for clarifying the nonclassical signaling pathway of androgens.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 35-35
Author(s):  
Stephanie A Luff ◽  
J Philip Creamer ◽  
Carissa Dege ◽  
Rebecca Scarfò ◽  
Samantha Morris ◽  
...  

The generation of the hematopoietic stem cells (HSCs) from human pluripotent stem cells (hPSCs) is a major goal for regenerative medicine. In the embryo, HSCs derive from a HOXA+ population known as hemogenic endothelium (HE) in a retinoic acid (RA)-dependent manner. Using hPSCs, we have previously identified a KDR+CD235a− mesodermal population that gives rise to a clonally multipotent HOXA+ definitive HE. However, this HE lacks HSC-like capacity in the absence of exogenous transgenes and is functionally unresponsive to RA treatment. Thus, the specification of an RA-dependent hematopoietic program from hPSCs has remained elusive. Through single cell RNA-seq (scRNA-seq) analyses, we identified that 2 distinct KDR+CD235a− populations exist prior to HE specification, distinguishable by CXCR4 expression. Interestingly, KDR+CD235a−CXCR4− mesoderm expressed CYP26A1, an RA degrading enzyme, and harbored definitive hematopoietic potential within hPSC differentiation cultures in the absence of RA signaling, indicating the HE specified from CXCR4− mesoderm as RA-independent (RAi). In sharp contrast, KDR+CD235a−CXCR4+ mesoderm exclusively expressed ALDH1A2, the key enzyme in the synthesis of RA, but lacked hematopoietic potential under the same culture conditions. However, the stage-specific application of RA signaling to CXCR4+ mesoderm resulted in the robust specification of CD34+HOXA+ HE with definitive erythroid, myeloid, and lymphoid hematopoietic potential, establishing this HE as RA-dependent (RAd). Furthermore, while RAi HE entirely failed to persist following murine hematopoietic xenografts, RAd HE transiently persisted within the peripheral blood and bone marrow of murine hosts. To assess whether these functionally distinct hPSC mesodermal progenitors are physiologically relevant to human embryonic development, we integrated scRNA-seq datasets from the hPSC mesodermal cultures and a gastrulating human embryo. These analyses revealed that in vivo, distinct KDR+CXCR4−CYP26A1+ and KDR+CXCR4+ALDH1A2+ populations can be found at the stage of emergent mesoderm, following patterning of nascent mesoderm. Additional comparison to later stage human embryos demonstrated that RAd HE has a more fetal-like HOXA expression pattern than RAi HE. Scoring of single fetal HE cells against hPSC-derived HE revealed that while some early fetal HE cells were similar to RAi HE, the late fetal HE cells, which are hypothesized to give rise to HSCs, were more similar to RAd HE. Lastly, as HSC-competent HE is expected to express arterial genes, we found a subset of late fetal HE with this phenotype that were exclusively similar to RAd HE. Collectively, these data represent the first ever characterization of RA-dependent hPSC-derived definitive hematopoiesis and its mesodermal progenitor. Additionally, we provide evidence for in vivo mesodermal and HE correlates for both RAi and RAd hematopoietic programs within human embryos. This novel insight into human hematopoietic development will serve as an important tool for modeling development and ultimately provide the basis for de novo specification of HSCs. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document