scholarly journals Visualizing endogenous Rho activity with an improved localization-based, genetically encoded biosensor

2021 ◽  
Author(s):  
Eike K. Mahlandt ◽  
Janine J. G. Arts ◽  
Werner J. van der Meer ◽  
Franka H. van der Linden ◽  
Simon Tol ◽  
...  

Rho GTPases are regulatory proteins, which orchestrate cell features such as morphology, polarity and movement. Therefore, probing Rho GTPase activity is key to understanding processes such as development and cell migration. Localization-based reporters for active Rho GTPases are attractive probes to study Rho GTPase-mediated processes, in real time with subcellular resolution in living cells and tissue. Until now, relocation Rho biosensors seem to only be useful in certain organisms and have not been characterized well. In this paper, we systematically examined the contribution of the fluorescent protein and Rho binding peptides, on the performance of localization-based sensors. To test the performance, we compared relocation efficiency and specificity in cell-based assays. We identified several improved localization-based, genetically encoded, fluorescent biosensors for detecting endogenous Rho activity. This enables a broader application of Rho relocation biosensors, which was demonstrated by using the improved biosensor to visualize Rho activity during several cellular processes, such as cell division, migration and G protein-coupled receptor signaling. Due to the improved avidity of the new biosensors for Rho activity, cellular processes regulated by Rho can be better understood.

2021 ◽  
Author(s):  
Eike K. Mahlandt ◽  
Janine J. G. Arts ◽  
Werner J. van der Meer ◽  
Franka H. van der Linden ◽  
Simon Tol ◽  
...  

AbstractRho GTPases are regulatory proteins, which orchestrate cell features such as morphology, polarity and movement. Therefore, probing Rho GTPase activity is key to understanding processes such as development, cell migration and wound healing. Localization-based reporters for active Rho GTPases are attractive probes to study Rho GTPase-mediated processes, in real time with subcellular resolution in living cells and tissue. Until now, relocation RhoA biosensors seem to only be useful in certain organisms and have not been characterized well. In this paper, we systematically examined the contribution of the fluorescent protein and RhoA binding peptides, on the performance of localization-based sensors. To test the performance, we compared relocation efficiency and specificity in cell-based assays. We identified several improved localization-based, genetically encoded, fluorescent biosensors for detecting endogenous RhoA activity. This enables a broader application of RhoA relocation biosensors, which was demonstrated by using the improved biosensor to visualize RhoA activity, during cell division, during random migration, at the Golgi membrane and induced by G protein-coupled receptor signaling. Due to the improved avidity of the new biosensors for RhoA activity, cellular processes regulated by RhoA can be better understood.Abstract Figure


2015 ◽  
Vol 112 (9) ◽  
pp. E937-E946 ◽  
Author(s):  
Krishna K. Midde ◽  
Nicolas Aznar ◽  
Melanie B. Laederich ◽  
Gary S. Ma ◽  
Maya T. Kunkel ◽  
...  

Environmental cues are transmitted to the interior of the cell via a complex network of signaling hubs. Receptor tyrosine kinases (RTKs) and trimeric G proteins are two such major signaling hubs in eukaryotes. Conventionally, canonical signal transduction via trimeric G proteins is thought to be triggered exclusively by G protein-coupled receptors. Here we used molecular engineering to develop modular fluorescent biosensors that exploit the remarkable specificity of bimolecular recognition, i.e., of both G proteins and RTKs, and reveal the workings of a novel platform for activation of G proteins by RTKs in single living cells. Comprised of the unique modular makeup of guanidine exchange factor Gα-interacting vesicle-associated protein (GIV)/girdin, a guanidine exchange factor that links G proteins to a variety of RTKs, these biosensors provide direct evidence that RTK–GIV–Gαi ternary complexes are formed in living cells and that Gαi is transactivated within minutes after growth factor stimulation at the plasma membrane. Thus, GIV-derived biosensors provide a versatile strategy for visualizing, monitoring, and manipulating the dynamic association of Gαi with RTKs for noncanonical transactivation of G proteins in cells and illuminate a fundamental signaling event regulated by GIV during diverse cellular processes and pathophysiologic states.


Cells ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1037 ◽  
Author(s):  
Cho ◽  
Kim ◽  
Baek ◽  
Kim ◽  
Lee

Rho GDP dissociation inhibitors (RhoGDIs) play important roles in various cellular processes, including cell migration, adhesion, and proliferation, by regulating the functions of the Rho GTPase family. Dissociation of Rho GTPases from RhoGDIs is necessary for their spatiotemporal activation and is dynamically regulated by several mechanisms, such as phosphorylation, sumoylation, and protein interaction. The expression of RhoGDIs has changed in many human cancers and become associated with the malignant phenotype, including migration, invasion, metastasis, and resistance to anticancer agents. Here, we review how RhoGDIs control the function of Rho GTPases by regulating their spatiotemporal activity and describe the regulatory mechanisms of the dissociation of Rho GTPases from RhoGDIs. We also discuss the role of RhoGDIs in cancer progression and their potential uses for therapeutic intervention.


Author(s):  
Fabienne Podieh ◽  
Peter L. Hordijk

Cullin3-based ubiquitin E3 ligases induce ubiquitination of substrates leading to their proteasomal or lysosomal degradation. BTB proteins serve as adaptors by binding to Cullin3 and recruiting substrate proteins, which enables specific recognition of a broad spectrum of targets. Hence, Cullin3 and its adaptors are involved in myriad cellular processes and organ functions. Cullin3-based ubiquitin E3 ligase complexes target small GTPases of the Rho subfamily, which are key regulators of cytoskeletal dynamics and cell adhesion. In this mini review, we discuss recent insights in Cullin3-mediated regulation of Rho GTPases and their impact on cellular function and disease. Intriguingly, upstream regulators of Rho GTPases are targeted by Cullin3 complexes as well. Thus, Rho GTPase signaling is regulated by Cullin3 on multiple levels. In addition, we address current knowledge of Cullin3 in regulating vascular function, focusing on its prominent role in endothelial barrier function, angiogenesis and the regulation of blood pressure.


Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 835 ◽  
Author(s):  
Daji Guo ◽  
Xiaoman Yang ◽  
Lei Shi

The Rho family GTPases are small G proteins that act as molecular switches shuttling between active and inactive forms. Rho GTPases are regulated by two classes of regulatory proteins, guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Rho GTPases transduce the upstream signals to downstream effectors, thus regulating diverse cellular processes, such as growth, migration, adhesion, and differentiation. In particular, Rho GTPases play essential roles in regulating neuronal morphology and function. Recent evidence suggests that dysfunction of Rho GTPase signaling contributes substantially to the pathogenesis of autism spectrum disorder (ASD). It has been found that 20 genes encoding Rho GTPase regulators and effectors are listed as ASD risk genes by Simons foundation autism research initiative (SFARI). This review summarizes the clinical evidence, protein structure, and protein expression pattern of these 20 genes. Moreover, ASD-related behavioral phenotypes in animal models of these genes are reviewed, and the therapeutic approaches that show successful treatment effects in these animal models are discussed.


2016 ◽  
Vol 473 (24) ◽  
pp. 4551-4558 ◽  
Author(s):  
Chaim Kahana

Ornithine decarboxylase (ODC) is the first and rate-limiting enzyme in the biosynthesis of polyamines, low-molecular-mass aliphatic polycations that are ubiquitously present in all living cells and are essential for fundamental cellular processes. Most cellular polyamines are bound, whereas the free pools, which regulate cellular functions, are subjected to tight regulation. The regulation of the free polyamine pools is manifested by modulation of their synthesis, catabolism, uptake and excretion. A central element that enables this regulation is the rapid degradation of key enzymes and regulators of these processes, particularly that of ODC. ODC degradation is part of an autoregulatory circuit that responds to the intracellular level of the free polyamines. The driving force of this regulatory circuit is a protein termed antizyme (Az). Az stimulates the degradation of ODC and inhibits polyamine uptake. Az acts as a sensor of the free intracellular polyamine pools as it is expressed via a polyamine-stimulated ribosomal frameshifting. Az binds to monomeric ODC subunits to prevent their reassociation into active homodimers and facilitates their ubiquitin-independent degradation by the 26S proteasome. In addition, through a yet unidentified mechanism, Az inhibits polyamine uptake. Interestingly, a protein, termed antizyme inhibitor (AzI) that is highly homologous with ODC, but retains no ornithine decarboxylating activity, seems to regulate cellular polyamines through its ability to negate Az. Overall, the degradation of ODC is a net result of interactions with regulatory proteins and possession of signals that mediate its ubiquitin-independent recognition by the proteasome.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1478 ◽  
Author(s):  
Monilola A. Olayioye ◽  
Bettina Noll ◽  
Angelika Hausser

As membrane-associated master regulators of cytoskeletal remodeling, Rho GTPases coordinate a wide range of biological processes such as cell adhesion, motility, and polarity. In the last years, Rho GTPases have also been recognized to control intracellular membrane sorting and trafficking steps directly; however, how Rho GTPase signaling is regulated at endomembranes is still poorly understood. In this review, we will specifically address the local Rho GTPase pools coordinating intracellular membrane trafficking with a focus on the endo- and exocytic pathways. We will further highlight the spatiotemporal molecular regulation of Rho signaling at endomembrane sites through Rho regulatory proteins, the GEFs and GAPs. Finally, we will discuss the contribution of dysregulated Rho signaling emanating from endomembranes to the development and progression of cancer.


2010 ◽  
Vol 103 (01) ◽  
pp. 40-55 ◽  
Author(s):  
Cora Beckers ◽  
Victor van Hinsbergh ◽  
Geerten van Nieuw Amerongen

SummaryIn the past decade understanding of the role of the Rho GTPases RhoA, Rac1 and Cdc42 has been developed from regulatory proteins that regulate specific actin cytoskeletal structures – stress fibers, lamellipodia and filopodia – to complex integrators of cytoskeletal structures that can exert multiple functions depending on the cellular context. Fundamental to these functions are three-dimensional complexes between the individual Rho GTPases, their specific activators (GEFs) and inhibitors (GDIs and GAPs), which greatly outnumber the Rho GTPases themselves, and additional regulatory proteins. By this complexity of regulation different vasoactive mediators can induce various cytoskeletal structures that enable the endothelial cell (EC) to respond adequately. In this review we have focused on this complexity and the consequences of Rho GTPase regulation for endothelial barrier function. The permeability inducers thrombin and VEGF are presented as examples of G-protein coupled receptor- and tyrosine kinase receptormediated Rho GTPase activation, respectively. These mediators induce complex but markedly different networks of activators, inhibitors and effectors of Rho GTPases, which alter the endothelial barrier function. An interesting feature in this regulation is that Rho GTPases often have both barrier-protecting and barrier-disturbing functions. While Rac1 enforces the endothelial junctions, it becomes part of a barrier-disturbing mechanism as activator of reactive oxygen species generating NADPH oxidase. Similarly RhoA is protective under basal conditions, but becomes involved in barrier dysfunction after activation of ECs by thrombin. The challenge and promise lies in unfolding this complex regulation, as this will provide leads for new therapeutic opportunities.


Author(s):  
Eva Crosas-Molist ◽  
Remi Samain ◽  
Leonie Kohlhammer ◽  
Jose Orgaz ◽  
Samantha George ◽  
...  

Rho GTPases are a family of small G proteins that regulate a wide array of cellular processes related to their key roles controlling the cytoskeleton. On the other hand, cancer is a multi-step disease caused by the accumulation of genetic mutations and epigenetic alterations, from the initial stages of cancer development when cells in normal tissues undergo transformation, to the acquisition of invasive and metastatic traits, responsible for a large number of cancer related deaths. In this review, we discuss the role of Rho GTPase signalling in cancer in every step of disease progression. Rho GTPases contribute to tumour initiation and progression, by regulating proliferation and apoptosis, but also metabolism, senescence and cell stemness. Rho GTPases play a major role in cell migration, and in the metastatic process. They are also involved in interactions with the tumour microenvironment and regulate inflammation, contributing to cancer progression. After years of intensive research, we highlight the importance of relevant models in the Rho GTPase field, and we reflect on the therapeutic opportunities arising for cancer patients.


2018 ◽  
Author(s):  
Paul M. Müller ◽  
Juliane Rademacher ◽  
Richard D. Bagshaw ◽  
Keziban M. Alp ◽  
Girolamo Giudice ◽  
...  

AbstractRho GTPases control cell morphogenesis and thus fundamental processes in all eukaryotes. They are regulated by 145 RhoGEF and RhoGAP multi-domain proteins in humans. How the Rho signaling system is organized to generate localized responses in cells and prevent their spreading is not understood. Here, we systematically characterized the substrate specificities, localization and interactome of the RhoGEFs/RhoGAPs and revealed their critical role in contextualizing and spatially delimiting Rho signaling. They localize to multiple compartments providing positional information, are extensively interconnected to jointly coordinate their signaling networks and are widely autoinhibited to remain sensitive to local activation. RhoGAPs exhibit lower substrate specificity than RhoGEFs and may contribute to preserving Rho activity gradients. Our approach led us to uncover a multi-RhoGEF complex downstream of G-protein-coupled receptors controlling a Cdc42/RhoA crosstalk. The spatial organization of Rho signaling thus differs from other small GTPases and expands the repertoire of mechanisms governing localized signaling activity.


Sign in / Sign up

Export Citation Format

Share Document