scholarly journals Respiratory gas exchange at lungs, gills and tissues: mechanisms and adjustments.

1982 ◽  
Vol 100 (1) ◽  
pp. 5-22 ◽  
Author(s):  
J Piiper

(1) A general model for external gas exchange organs of vertebrates is presented, in which the main parameters are the ventilatory, diffusive and perfusive conductances for O2 and CO2. The relevant properties of the external medium (air or water) and of the internal medium (blood) are analysed in terms of capacitance coefficients (effective solubilities) for O2 and CO2. The models for the main types of gas exchange organs (fish gills, amphibian skin, and avian and mammalian lungs) are compared in terms of their intrinsic gas exchange efficacy. The adjustments to increased metabolic rate or to hypoxia are achieved by increasing the conductances. (2) The gas exchange at tissue level is analysed using the Krogh cylinder and a simplified model containing a diffusive and a perfusive conductance. The adjustments to increased load (exercise, hypoxia) consist in both increased local blood flow and in improvement of diffusion conditions (enlargement and recruitment of capillaries). (3) Some particular features of respiration in transitional (unsteady) states, such as occurring at the beginning of exercise and of hypoxia, are examined. The additional physical variables are the O2 (and CO2) stores acting according to their capacitances and partial pressure changes. Delayed increase in O2 uptake at the beginning of exercise is due to the limited speed of physiological adjustments. The ensuing O2 debt is energetically covered by anoxidative energy releasing processes (hydrolysis of high-energy phosphates and anaerobic glycolysis). Finally, the reduction of metabolic rate as adjustment to hypoxia is discussed.

Author(s):  
Xiaoyan Wang ◽  
Jinmei Du ◽  
Changhai Xu

Abstract:: Activated peroxide systems are formed by adding so-called bleach activators to aqueous solution of hydrogen peroxide, developed in the seventies of the last century for use in domestic laundry for their high energy efficiency and introduced at the beginning of the 21st century to the textile industry as an approach toward overcoming the extensive energy consumption in bleaching. In activated peroxide systems, bleach activators undergo perhydrolysis to generate more kinetically active peracids that enable bleaching under milder conditions while hydrolysis of bleach activators and decomposition of peracids may occur as side reactions to weaken the bleaching efficiency. This mini-review aims to summarize these competitive reactions in activated peroxide systems and their influence on bleaching performance.


1981 ◽  
Vol 240 (5) ◽  
pp. H804-H810 ◽  
Author(s):  
H. D. Kleinert ◽  
H. R. Weiss

Blood flow and high-energy phosphate (HEP) content were determined simultaneously in multiple microregions of left ventricular subendocardium in 29 normal anesthetized open-chest rabbits by use of a new micromethod to determine whether a direct linear relationship existed between these parameters. Tissue samples weighed 1-2 mg. ATP and creatine phosphate (CP) content were quantitated in quick-frozen hearts by fluorometry at sites where tissue perfusion was measured by H2 clearance by use of bare-tipped platinum electrodes. A series of validation studies were conducted to ensure that 1) no significant damage to the tissue surrounding the electrode occurred during the period of experimentation and 2) no significant loss of biochemical constituents had occurred due to labile processes during freezing or storage of the tissue. Blood flow, ATP, and CP values averaged 79.1 +/- 24.1 (SD) ml.min-1.100 g-1, 4.9 +/- 1.3 mumol/g tissue, and 8.0 +/- 3.0 mumol/g tissue, respectively, and are similar to those reported in studies using larger tissue samples. Correlation between the heterogeneous distribution of tissue perfusion and HEP revealed no direct linear relationship between these parameters in the normal unstressed rabbit subendocardium.


1989 ◽  
Vol 28 (1-2) ◽  
pp. 83-91 ◽  
Author(s):  
Tim S. Whittingham ◽  
Eduardo Warman ◽  
Hussein Assaf ◽  
Thomas J. Sick ◽  
Joseph C. LaManna

1990 ◽  
Vol 258 (5) ◽  
pp. H1357-H1365 ◽  
Author(s):  
E. D. Lewandowski ◽  
D. L. Johnston

13C and 31P nuclear magnetic resonance (NMR) spectra were used to assess substrate oxidation and high-energy phosphates in postischemic (PI) isolated rabbit hearts. Phosphocreatine (PCr) increased in nonischemic controls on switching from glucose perfusion to either 2.5 mM [3-13C]pyruvate (120%, n = 7) or [2-13C]acetate (114%, n = 8, P less than 0.05). ATP content, oxygen consumption (MVO2), and hemodynamics (dP/dt) were not affected by substrate availability in control or PI hearts. dP/dt was 40-60% lower in PI hearts during reperfusion after 10 min ischemia. Hearts reperfused with either pyruvate (n = 11) or acetate (n = 8) regained preischemic PCr levels within 45 s. Steady-state ATP levels were 55-70% of preischemia with pyruvate and 52-60% with acetate. Percent maximum [4-13C]glutamate signal showed reduced conversion of pyruvate to glutamate via the tricarboxylic acid (TCA) cycle at 4-min reperfusion (PI = 24 +/- 4%, means +/- SE; Control = 48 +/- 4%). The increase in 13C signal from the C-4 position of glutamate was similar to control hearts within 10.5 min. The increase in [4-13C]glutamate signal from acetate was not different between PI and control hearts. The ratio of [2-13C]Glu:[4-13C]Glu, reflecting TCA cycle activity, was reduced in PI hearts with acetate for at least 10 min (Control = 0.76 +/- 0.03; PI = 0.51 +/- 0.09) until steady state was reached. Despite rapid recovery of oxidative phosphorylation, contractility remained impaired and substrate oxidation was significantly slowed in postischemic hearts.


1994 ◽  
Vol 266 (5) ◽  
pp. C1257-C1262 ◽  
Author(s):  
Y. Ohira ◽  
K. Saito ◽  
T. Wakatsuki ◽  
W. Yasui ◽  
T. Suetsugu ◽  
...  

Responses of beta-adrenoceptor (beta-AR) in rat soleus to gravitational unloading and/or changes in the levels of phosphorus compounds by feeding either creatine or its analogue beta-guanidinopropionic acid (beta-GPA) were studied. A decrease in the density of beta-AR (about -35%) was induced by 10 days of hindlimb suspension, but the affinity of the receptor was unaffected. Suspension unloading tended to increase the levels of adenosine triphosphate and phosphocreatine and decrease inorganic phosphate. Even without unloading, the beta-AR density decreased after an oral creatine supplementation (about -20%), which also tended to elevate the high-energy phosphate levels in muscle. However, an elevation of beta-AR density was induced (about +36%) after chronic depletion of high-energy phosphates by feeding beta-GPA (about +125%). Data suggest that the density of beta-AR in muscle is elevated if the high-energy phosphate contents are chronically decreased and vice versa. However, it may not be directly related to the degree of muscle contractile activity.


Perfusion ◽  
1998 ◽  
Vol 13 (5) ◽  
pp. 328-333 ◽  
Author(s):  
D NF Harris ◽  
J A Wilson ◽  
S D Taylor-Robinson ◽  
K M Taylor

Hypothermic cardiopulmonary bypass (CPB) is associated with a high incidence of neuropsychological defects, marked cerebral swelling immediately after surgery and jugular bulb desaturation during rewarming. This suggests cerebral ischaemia may occur, but evidence is indirect. We studied four patients with 31P magnetic resonance spectroscopy (MRS) and four with 1H MRS before and immediately after coronary surgery. There was no visible lactate in 1H MR spectra. In 31P MR spectra, the ratio of phosphocreatine to adenosine triphosphate was maintained (before: 2.13 ± 0.86 vs after: 2.57 ± 1.31; mean ± 1 SD) and there was no intracellular acidosis (intracellular pH: 7.1 ± 0.04 vs 7.16 ± 0.08), while phosphocreatine/inorganic phosphate was increased immediately after the operation (2.92 ± 0.37 vs 6.39 ± 2.67, p = 0.03). This suggests rebound replacement of energy stores following recovery from temporary cerebral ischaemia during CPB: intra-operative studies would be needed to test this hypothesis further.


Sign in / Sign up

Export Citation Format

Share Document