Thermoregulation and Control of Head Temperature in the Sphinx Moth, Manduca Sexta

1982 ◽  
Vol 101 (1) ◽  
pp. 1-15 ◽  
Author(s):  
JERI R. HEGEL ◽  
TIMOTHY M. CASEY

Head and thorax temperatures (Th and Tth were tightly coupled during pre-flight warm-up over a range of ambient temperatures (Ta). At Ta = 21 °C, the head reached a significantly higher temperature (Tth = 32 °C) than during exogenous heating of dead moths to the same thoracic temperature (Tth = 26 °C). In free-flying moths, slopes of linear regressions for both Tth and TTh versus Ta were about 0.4. At any Ta, Th remained only about 7 °C below Tth Abdominal temperature varied with Ta with a slope of 1.2 and remained 2–5 degrees above Ta. Cooling constants (min−1) for the head, calculated from cooling experiments with the thorax either at Ta or maintained constant at about 40 °C, yielded similar values. During free flight, as Ta increased from 17 to 32 °C, thoracic heat loss decreased from 36 to 20% of the total heat production, head heat loss decreased from 27 to 8%, and abdominal heat loss increased from 17 to 37%. During warm-up at all Ta's the largest component of energy expenditure was the heat storage and heat loss that occurred from the thorax, followed by that from the abdomen and then by that from the head. Exogenous heating of some live moths resulted in cyclic temperature fluctuations in which Th and Tth changed simultaneously and in opposite directions. During each cycle, the heart beat pattern changed, becoming irregular when Tth was increasing and returning to a regular pattern when Tth was decreasing. Smaller temperature fluctuations in the head occurred at the same rate as the heart beat. These data suggest that the head temperatures observed during pre-flight warm-up and flight are the result of active heat transfer from the thorax via the blood circulation.

1979 ◽  
Vol 80 (1) ◽  
pp. 217-229 ◽  
Author(s):  
HEINRICH BERND

1. While foraging, attacking, or leaving or returning to their hives, both the African and European honeybees maintained their thoracic temperature at 30 °C or above, independent of ambient temperature from 7 to 23 °C (in shade). 2. Thoracic temperatures were not significantly different between African and European bees. 3. Thoracic temperatures were significantly different during different activities. Average thoracic temperatures (at ambient temperatures of 8–23 °C) were lowest (30 °C) in bees turning to the hive. They were 31–32 °C during foraging, and 36–38 °C in bees leaving the hive, and in those attacking. The bees thus warm up above their temperature in the hive (32 °C) before leaving the colony. 4. In the laboratory the bees (European) did not maintain the minimum thoracic temperature for continuous flight (27 °C) at 10 °C. When forced to remain in continuous flight for at least 2 min, thoracic temperature averaged 15 °C above ambient temperature from 15 to 25 °C, and was regulated only at high ambient temperatures (30–40 °C). 5. At ambient temperatures > 25 °C, the bees heated up during return to the hive, attack and foraging above the thoracic temperatures they regulated at low ambient temperatures to near the temperatures they regulated during continuous flight. 6. In both African and European bees, attack behaviour and high thoracic temperature are correlated. 7. The data suggest that the bees regulate thoracic temperature by both behavioural and physiological means. It can be inferred that the African bees have a higher metabolic rate than the European, but their smaller size, which facilitates more rapid heat loss, results in similar thoracic temperatures.


1993 ◽  
Vol 174 (1) ◽  
pp. 299-320 ◽  
Author(s):  
G. N. Stone

1. This study examines variation in thoracic temperatures, rates of pre-flight warm-up and heat loss in the solitary bee Anthophora plumipes (Hymenoptera; Anthophoridae). 2. Thoracic temperatures were measured both during free flight in the field and during tethered flight in the laboratory, over a range of ambient temperatures. These two techniques give independent measures of thermoregulatory ability. In terms of the gradient of thoracic temperature on ambient temperature, thermoregulation by A. plumipes is more effective before flight than during flight. 3. Warm-up rates and body temperatures correlate positively with body mass, while mass-specific rates of heat loss correlate negatively with body mass. Larger bees are significantly more likely to achieve flight temperatures at low ambient temperatures. 4. Simultaneous measurement of thoracic and abdominal temperatures shows that A. plumipes is capable of regulating heat flow between thorax and abdomen. Accelerated thoracic cooling is only demonstrated at high ambient temperatures. 5. Anthophora plumipes is able to fly at low ambient temperatures by tolerating thoracic temperatures as low as 25 sC, reducing the metabolic expense of endothermic activity. 6. Rates of heat generation and loss are used to calculate the thermal power generated by A. plumipes and the total energetic cost of warm-up under different thermal conditions. The power generated increases with thoracic temperature excess and ambient temperature. The total cost of warm-up correlates negatively with ambient temperature.


1978 ◽  
Vol 235 (1) ◽  
pp. R41-R47
Author(s):  
M. T. Lin ◽  
I. H. Pang ◽  
S. I. Chern ◽  
W. Y. Chia

Elevating serotonin (5-HT) contents in brain with 5-hydroxytryptophan (5-HTP) reduced rectal temperature (Tre) in rabbits after peripheral decarboxylase inhibition with the aromatic-L-amino-acid decarboxylase inhibitor R04-4602 at two ambient temperatures (Ta), 2 and 22 degrees C. The hypothermia was brought about by both an increase in respiratory evaporative heat loss (Eres) and a decrease in metabolic rate (MR) in the cold. At a Ta of 22 degrees C, the hypothermia was achieved solely due to an increase in heat loss. Depleting brain contents of 5-HT with intraventricular, 5,7-dihydroxytryptamine (5,7-DHT) produced an increased Eres and ear blood flow even at Ta of 2 degrees C. Also, MR increased at all but the Ta of 32 degrees C. However, depleting the central and peripheral contents of 5-HT with p-chlorophenylalanine (pCPA) produced lower MR accompanied by lower Eres in the cold compared to the untreated control. Both groups of pCPA-treated and 5,7-DHT-treated animals maintained their Tre within normal limits. The data suggest that changes in 5-HT content in brain affects the MR of rabbits in the cold. Elevating brain content of 5-HT tends to depress the MR response to cold, while depleting brain content of 5-HT tends to enhance the MR response to cold.


Author(s):  
HYEON SOO KIM ◽  
YONG RAE KWON ◽  
IN SANG CHUNG

Software restructuring is recognized as a promising method to improve logical structure and understandability of a software system which is composed of modules with loosely-coupled elements. In this paper, we present methods of restructuring an ill-structured module at the software maintenance phase. The methods identify modules performing multiple functions and restructure such modules. For identifying the multi-function modules, the notion of the tightly-coupled module that performs a single specific function is formalized. This method utilizes information on data and control dependence, and applies program slicing to carry out the task of extracting the tightly-coupled modules from the multi-function module. The identified multi-function module is restructured into a number of functional strength modules or an informational strength module. The module strength is used as a criterion to decide how to restructure. The proposed methods can be readily automated and incorporated in a software tool.


1971 ◽  
Vol 49 (5) ◽  
pp. 767-774 ◽  
Author(s):  
M. Berger ◽  
J. S. Hart ◽  
O. Z. Roy

Pulmonary ventilation and temperature of expired air and of the respiratory passages has been measured by telemetry during flight in the black duck (Anas rubripes) and the respiratory water and heat loss has been calculated.During flight, temperature of expired air was higher than at rest and decreased with decreasing ambient temperatures. Accordingly, respiratory water loss as well as evaporative heat loss decreased at low ambient temperatures, whereas heat loss by warming of the inspired air increased. The data indicated respiratory water loss exceeded metabolic water production except at very low ambient temperatures. In the range between −16 °C to +19 °C, the total respiratory heat loss was fairly constant and amounted to 19% of the heat production. Evidence for the independence of total heat loss and production from changes in ambient temperature during flight is discussed.


Author(s):  
Lisa Hühn ◽  
Oliver Munz ◽  
Corina Schwitzke ◽  
Hans-Jörg Bauer

Abstract Labyrinth seals are used to prevent and control the mass flow rate between rotating components. Due to thermally and mechanically induced expansions during operation and transient flight maneuvers, a contact, the so-called rubbing process, between rotor and stator cannot be excluded. A large amount of rubbing process data concerning numerical and experimental investigations is available in public literature as well as at the Institute of Thermal Turbomachinery (ITS). The investigations were carried out for different operating conditions, material combinations, and component geometries. In combination with the experiments presented in this paper, the effects of the different variables on load due to rubbing are compared, and discussed with the focus lying on the material combination. The influence of the material on the loads can be identified as detailed as never before. For example, the contact forces in the current experiments are higher due to a higher temperature resistance of Young’s modulus. The analysis will also be based on the rubbing of turbine blades. Design guidelines are derived for labyrinth seals with improved properties regarding tolerance of rub events. Based on the knowledge obtained, guidelines for designing reliable labyrinth seals for future engines are discussed.


PEDIATRICS ◽  
1983 ◽  
Vol 71 (6) ◽  
pp. 985-986
Author(s):  
R. DON BROWN ◽  
JOHN T. WILSON

In Reply.— El-Mallakh raises hypothetical questions about an enhancing effect of fever on mitochondrial damage associated with Reye's syndrome. Our article on aspirin and Reye's syndrome1 emphasized the role of prodromal illness in use of aspirin. Fever was only one of several [See table in the PDF] prodormal illness events that were different in patients as compared with control subjects. Results of our analysis of the epidemiologic data from the Ohio study reveal a statistically significant higher temperature in those children which Reye's syndrome as compared with unmatched control subjects (Table) as well as in patients and control subjects matched for record temperatures.1


1973 ◽  
Vol 58 (3) ◽  
pp. 677-688
Author(s):  
BERND HEINRICH ◽  
ANN E. KAMMER

1. Extracellular action potentials and thoracic temperatures (TTh) were simultaneously recorded from the fibrillar flight muscles of Bombus vosnesenskii queens during preflight warm-up, during stabilization of TTh in stationary bees, and during fixed flight. 2. In most stationary bees during warm-up and during the stabilization of TTh the rate of heat production, as calculated from thoracic temperature and passive rates of cooling, is directly related to the frequency of action potentials in the muscles. 3. The rate of heat production increases throughout warm-up primarily because of a greater spike frequency at higher TTh. 4. In stationary bees during the stabilization of TTh at different ambient temperatures (TA) the fibrillar muscles are activated by any in a continuous range of spike frequencies, rather than only by on-off responses. 5. Regulation of TTh in stationary bees may involve not only changes in the rate of heat production but also variations of heat transfer from the thorax to the abdomen. 6. During fixed flight the fibrillar muscles are usually activated at greater rates at the initiation of flight than later in flight, but the spike frequency and thus heat production are not varied in response to differences in TA and heating and cooling rates. 7. During fixed flight TTh is not regulated at specific set-points; TTh appears to vary passively in accordance with the physical laws of heating and cooling. 8. Differences in the TTh of bees in free and in fixed flight are discussed with regard to mechanisms of thermoregulation.


1967 ◽  
Vol 47 (1) ◽  
pp. 21-33
Author(s):  
JAMES EDWARD HEATH ◽  
PHILLIP A. ADAMS

1. Moths ‘warm-up’ prior to flight at mean rates of 4.06° C./min. in Celerio lineata and 2.5° C./min. in Rothschildia jacobae. The abdominal temperature rises only 2-3° C. during activity. 2. Oxygen consumption of torpid sphinx moths increases by a factor of 2.27 as temperature changes from 26° to 36° C. 3. Oxygen consumption during ‘warm-up’ increases with duration of ‘warm-up’ from about 1000 µl./g. min during the initial 30 sec. to nearly 1600µl./g. min. during the 3rd min. This increase compensates for increasing heat loss from the thorax during ‘warm-up‘. 4. When the moths are regulating thoracic temperature, oxygen consumption increases with decreasing air temperature from a mean of about 400µl./g. min at 31° C. to about 650µl./g. min. at 26° C 5. Values of O2 consumption calculated from the cooling curve of C. lineata are about 85% of the measured values of O2 consumption. 6. The giant silk moth, Rothschildia jacobae, regulates thoracic temperature during activity between about 32° and 36° C. at ambient temperature from 17° to 29° C. Moths kept at high temperatures are active longer, have more periods of activity and expend more energy for thermoregulation than moths kept at low temperatures. 7. Large moths increase metabolism during active periods to offset heat loss and thereby maintain a relatively constant internal temperature. In this regard they may be considered endothermic, like birds and mammals. 8. We estimate that male moths use 10% of their stored fat for thermoregulation, while females may use 50%.


1988 ◽  
Vol 51 (5) ◽  
pp. 373-383 ◽  
Author(s):  
FRANK L. BRYAN ◽  
SILVIA C. MICHANIE ◽  
PERSIA ALVAREZ ◽  
AURELIO PANIAGUA

Hazard analyses were conducted at four street-vending stands in the Dominican Republic. Temperatures of foods were measured during cooking, display (holding), and reheating (when done). Samples were taken at each step of the operation and at 5 to 6-h intervals during display. Foods usually attained temperatures that exceeded 90°C at the geometric center during cooking and reheating. At three of the stands, foods (e.g., fish, chickens, pork pieces) were fried and held until sold. Leftovers were held overnight at ambient temperatures in the home of the vendor or in a locked compartment of the stand. They were usually reheated early in the morning and displayed until sold. During the interval of holding, aerobic mesophilic counts progressively increased with time from about 103 after cooking to between 105 to 109/g. The higher counts were usually associated with holding overnight. Escherichia coli (in water, milk and cheese samples), Bacillus cereus (in bean and rice samples), and Clostridium perfringens (in meat, chicken and bean samples) were isolated, but usually in numbers less than 103/g. At the other stand, foods (e.g. beans, rice, meat and chicken) were cooked just before serving as complete meals. There were no leftovers. This operation was less hazardous, although there were many sanitary deficiencies. Recommendations for prevention and control of microbial hazards (mainly reducing holding time, periodic reheating and requesting reheating just before purchasing) are given. The need and suggestions for implementing educational activities to alert and inform those concerned about hazards and preventive measures are presented.


Sign in / Sign up

Export Citation Format

Share Document