Water skating in the larvae of dixella aestivalis (Diptera) and hydrobius fuscipes (Coleoptera)

1999 ◽  
Vol 202 (7) ◽  
pp. 845-853
Author(s):  
J. Brackenbury

The kinematics of locomotion was investigated in the aquatic larvae of Dixella aestivalis and Hydrobius fuscipes with the aid of high-speed video recordings. Both insects are able to skate on the surface of the water using the dorso-apical tracheal gill as an adhesive organ or ‘foot’. Progress relies on the variable adhesion of the foot between ‘slide’ and ‘hold’ periods of the locomotory cycle. The flexural body movements underlying skating in D. aestivalis can be derived directly from the figure-of-eight swimming mechanism used in underwater swimming. The latter is shown to be similar to figure-of-eight swimming in chironomid larvae. This study shows how the deployment of a ‘foot’ enables simple side-to-side flexural movements of the body to be converted into effective locomotion at the air-water interface.

2020 ◽  
Vol 76 (11) ◽  
pp. 1092-1103
Author(s):  
Yong Zi Tan ◽  
John L. Rubinstein

Blotting times for conventional cryoEM specimen preparation complicate time-resolved studies and lead to some specimens adopting preferred orientations or denaturing at the air–water interface. Here, it is shown that solution sprayed onto one side of a holey cryoEM grid can be wicked through the grid by a glass-fiber filter held against the opposite side, often called the `back', of the grid, producing a film suitable for vitrification. This process can be completed in tens of milliseconds. Ultrasonic specimen application and through-grid wicking were combined in a high-speed specimen-preparation device that was named `Back-it-up' or BIU. The high liquid-absorption capacity of the glass fiber compared with self-wicking grids makes the method relatively insensitive to the amount of sample applied. Consequently, through-grid wicking produces large areas of ice that are suitable for cryoEM for both soluble and detergent-solubilized protein complexes. The speed of the device increases the number of views for a specimen that suffers from preferred orientations.


2020 ◽  
Vol 19 (3) ◽  
pp. 398-414
Author(s):  
Naga Venkata Rakesh Nimmagadda ◽  
Lokeswara Rao Polisetty ◽  
Anantha Subramanian Vaidyanatha Iyer

Abstract High-speed planing crafts have successfully evolved through developments in the last several decades. Classical approaches such as inviscid potential flow–based methods and the empirically based Savitsky method provide general understanding for practical design. However, sometimes such analyses suffer inaccuracies since the air–water interface effects, especially in the transition phase, are not fully accounted for. Hence, understanding the behaviour at the transition speed is of fundamental importance for the designer. The fluid forces in planing hulls are dominated by phenomena such as flow separation at various discontinuities viz., knuckles, chines and transom, with resultant spray generation. In such cases, the application of potential theory at high speeds introduces limitations. This paper investigates the simulation of modelling of the pre-planing behaviour with a view to capturing the air–water interface effects, with validations through experiments to compare the drag, dynamic trim and wetted surface area. The paper also brings out the merits of gridding strategies to obtain reliable results especially with regard to spray generation due to the air–water interface effects. The verification and validation studies serve to authenticate the use of the multi-gridding strategies on the basis of comparisons with simulations using model tests. It emerges from the study that overset/chimera grids give better results compared with single unstructured hexahedral grids. Two overset methods are investigated to obtain reliable estimation of the dynamic trim and drag, and their ability to capture the spray resulting from the air–water interaction. The results demonstrate very close simulation of the actual flow kinematics at steady-speed conditions in terms of spray at the air–water interface, drag at the pre-planing and full planing range and dynamic trim angles.


2014 ◽  
Vol 11 (92) ◽  
pp. 20130992 ◽  
Author(s):  
Leif Ristroph ◽  
Stephen Childress

Ornithopters, or flapping-wing aircraft, offer an alternative to helicopters in achieving manoeuvrability at small scales, although stabilizing such aerial vehicles remains a key challenge. Here, we present a hovering machine that achieves self-righting flight using flapping wings alone, without relying on additional aerodynamic surfaces and without feedback control. We design, construct and test-fly a prototype that opens and closes four wings, resembling the motions of swimming jellyfish more so than any insect or bird. Measurements of lift show the benefits of wing flexing and the importance of selecting a wing size appropriate to the motor. Furthermore, we use high-speed video and motion tracking to show that the body orientation is stable during ascending, forward and hovering flight modes. Our experimental measurements are used to inform an aerodynamic model of stability that reveals the importance of centre-of-mass location and the coupling of body translation and rotation. These results show the promise of flapping-flight strategies beyond those that directly mimic the wing motions of flying animals.


2016 ◽  
Vol 12 (3) ◽  
pp. 20160011 ◽  
Author(s):  
David A. Penning ◽  
Baxter Sawvel ◽  
Brad R. Moon

To survive, organisms must avoid predation and acquire nutrients and energy. Sensory systems must correctly differentiate between potential predators and prey, and elicit behaviours that adjust distances accordingly. For snakes, strikes can serve both purposes. Vipers are thought to have the fastest strikes among snakes. However, strike performance has been measured in very few species, especially non-vipers. We measured defensive strike performance in harmless Texas ratsnakes and two species of vipers, western cottonmouths and western diamond-backed rattlesnakes, using high-speed video recordings. We show that ratsnake strike performance matches or exceeds that of vipers. In contrast with the literature over the past century, vipers do not represent the pinnacle of strike performance in snakes. Both harmless and venomous snakes can strike with very high accelerations that have two key consequences: the accelerations exceed values that can cause loss of consciousness in other animals, such as the accelerations experienced by jet pilots during extreme manoeuvres, and they make the strikes faster than the sensory and motor responses of mammalian prey and predators. Both harmless and venomous snakes can strike faster than the blink of an eye and often reach a target before it can move.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tongtao Yue ◽  
Rujie Lv ◽  
Dongfang Xu ◽  
Yan Xu ◽  
Lu Liu ◽  
...  

Abstract Background Airborne nanoparticles can be inhaled and deposit in human alveoli, where pulmonary surfactant (PS) molecules lining at the alveolar air–water interface act as the first barrier against inhaled nanoparticles entering the body. Although considerable efforts have been devoted to elucidate the mechanisms underlying nanoparticle-PS interactions, our understanding on this important issue is limited due to the high complexity of the atmosphere, in which nanoparticles are believed to experience transformations that remarkably change the nanoparticles’ surface properties and states. By contrast with bare nanoparticles that have been extensively studied, relatively little is known about the interactions between PS and inhaled nanoparticles which already adsorb contaminants. In this combined experimental and computational effort, we investigate the joint interactions between PS and graphene-family materials (GFMs) with coexisting benzo[a]pyrene (BaP). Results Depending on the BaP concentration, molecular agglomeration, and graphene oxidation, different nanocomposite structures are formed via BaPs adsorption on GFMs. Upon deposition of GFMs carrying BaPs at the pulmonary surfactant (PS) layer, competition and cooperation of interactions between different components determines the interfacial processes including BaP solubilization, GFM translocation and PS perturbation. Importantly, BaPs adsorbed on GFMs are solubilized to increase BaP’s bioavailability. By contrast with graphene adhering on the PS layer to release part of adsorbed BaPs, more BaPs are released from graphene oxide, which induces a hydrophilic pore in the PS layer and shows adverse effect on the PS biophysical function. Translocation of graphene across the PS layer is facilitated by BaP adsorption through segregating it from contact with PS, while translocation of graphene oxide is suppressed by BaP adsorption due to the increase of surface hydrophobicity. Graphene extracts PS molecules from the layer, and the resultant PS depletion declines with graphene oxidation and BaP adsorption. Conclusion GFMs showed high adsorption capacity towards BaPs to form nanocomposites. Upon deposition of GFMs carrying BaPs at the alveolar air–water interface covered by a thin PS layer, the interactions of GFM-PS, GFM-BaP and BaP-PS determined the interfacial processes of BaP solubilization, GFM translocation and PS perturbation.


Fluids ◽  
2020 ◽  
Vol 5 (2) ◽  
pp. 78
Author(s):  
Kacie T. M. Niimoto ◽  
Kyleigh J. Kuball ◽  
Lauren N. Block ◽  
Petra H. Lenz ◽  
Daisuke Takagi

Copepods are agile microcrustaceans that are capable of maneuvering freely in water. However, the physical mechanisms driving their rotational motion are not entirely clear in small larvae (nauplii). Here we report high-speed video observations of copepod nauplii performing acrobatic feats with three pairs of appendages. Our results show rotations about three principal axes of the body: yaw, roll, and pitch. The yaw rotation turns the body to one side and results in a circular swimming path. The roll rotation consists of the body spiraling around a nearly linear path, similar to an aileron roll of an airplane. We interpret the yaw and roll rotations to be facilitated by appendage pronation or supination. The pitch rotation consists of flipping on the spot in a maneuver that resembles a backflip somersault. The pitch rotation involved tail bending and was not observed in the earliest stages of nauplii. The maneuvering strategies adopted by plankton may inspire the design of microscopic robots, equipped with suitable controls for reorienting autonomously in three dimensions.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6307
Author(s):  
Prasara Jakkaew ◽  
Takao Onoye

Monitoring of respiration and body movements during sleep is a part of screening sleep disorders related to health status. Nowadays, thermal-based methods are presented to monitor the sleeping person without any sensors attached to the body to protect privacy. A non-contact respiration monitoring based on thermal videos requires visible facial landmarks like nostril and mouth. The limitation of these techniques is the failure of face detection while sleeping with a fixed camera position. This study presents the non-contact respiration monitoring approach that does not require facial landmark visibility under the natural sleep environment, which implies an uncontrolled sleep posture, darkness, and subjects covered with a blanket. The automatic region of interest (ROI) extraction by temperature detection and breathing motion detection is based on image processing integrated to obtain the respiration signals. A signal processing technique was used to estimate respiration and body movements information from a sequence of thermal video. The proposed approach has been tested on 16 volunteers, for which video recordings were carried out by themselves. The participants were also asked to wear the Go Direct respiratory belt for capturing reference data. The result revealed that our proposed measuring respiratory rate obtains root mean square error (RMSE) of 1.82±0.75 bpm. The advantage of this approach lies in its simplicity and accessibility to serve users who require monitoring the respiration during sleep without direct contact by themselves.


2000 ◽  
Vol 203 (12) ◽  
pp. 1869-1885 ◽  
Author(s):  
A. Roberts ◽  
N.A. Hill ◽  
R. Hicks

Many amphibian tadpoles hatch and swim before their inner ears and sense of spatial orientation differentiate. We describe upward and downward swimming responses in hatchling Xenopus laevis tadpoles from stages 32 to 37/38 in which the body rotates about its longitudinal axis. Tadpoles are heavier than water and, if touched while lying on the substratum, they reliably swim upwards, often in a tight spiral. This response has been observed using stroboscopic photography and high-speed video recordings. The sense of the spiral is not fixed for individual tadpoles. In ‘more horizontal swimming’ (i.e. in directions within +/−30 degrees of the horizontal), the tadpoles usually swim belly-down, but this position is not a prerequisite for subsequent upward spiral swimming. Newly hatched tadpoles spend 99 % of their time hanging tail-down from mucus secreted by a cement gland on the head. When suspended in mid-water by a mucus strand, tadpoles from stage 31 to 37/38 tend to swim spirally down when touched on the head and up when touched on the tail. The three-dimensional swimming paths of stage 33/34 tadpoles were plotted using simultaneous video images recorded from the side and from above. Tadpoles spiralled for 70 % of the swimming time, and the probability of spiralling increased to 1 as swim path angles became more vertical. Tadpoles were neutrally buoyant in Percoll/water mixtures at 1.05 g cm(−)(3), in which anaesthetised tadpoles floated belly-down and head-up at 30 degrees. In water, their centre of mass was ventral to the muscles in the yolk mass. A simple mathematical model suggests that the orientation of tadpoles during swimming is governed by the action of two torques, one of which raises the head (i.e. increases the pitch) and the other rotates (rolls) the body. Consequently, tadpoles (i) swim belly-down when the body is approximately horizontal because the body is ballasted by dense yolk, and (ii) swim spirally at more vertical orientations when the ballasting no longer stabilises orientation. Measurements in tethered tadpoles show that dorsal body flexion, which could produce a dorsal pitch torque, is present during swimming and increases with tailbeat frequency. We discuss how much of the tadpole's behaviour can be explained by our mathematical model and suggest that, at this stage of development, oriented swimming responses may depend on simple touch reflexes, the organisation of the muscles and physical features of the body, rather than on vestibular reflexes.


Sign in / Sign up

Export Citation Format

Share Document