High feeding costs limit dive time in the largest whales

2002 ◽  
Vol 205 (12) ◽  
pp. 1747-1753 ◽  
Author(s):  
A. Acevedo-Gutiérrez ◽  
D. A. Croll ◽  
B. R. Tershy

SUMMARY Large body size usually extends dive duration in air-breathing vertebrates. However, the two largest predators on earth, the blue whale (Balaenoptera musculus) and the fin whale (B. physalus), perform short dives for their size. Here, we test the hypothesis that the foraging behavior of these two species (lunge-feeding) is energetically expensive and limits their dive duration. We estimated the cost of lunge-feeding in both species using an approach that combined attaching time/depth recorders to seven blue whales and eight fin whales and comparing the collected dive information with predictions made by optimality models of dive behavior. We show that the rate at which whales recovered from a foraging dive was twice that of a non-foraging dive and that the cost of foraging relative to the cost of travel to and from the prey patch was 3.15 in blue whales (95 % CI 2.58-3.72) and 3.60 in fin whales(95 % CI 2.35-4.85). Whales foraged in small areas (<1 km2) and foraging bouts lasted more than one dive, indicating that prey did not disperse and thus that prey dispersal could not account for the limited dive durations of the whales. Despite the enormous size of blue whales and fin whales, the high energetic costs of lunge-feeding confine them to short durations of submergence and to areas with dense prey aggregations. As a corollary, because of their limited foraging time under water, these whales may be particularly vulnerable to perturbations in prey abundance.

2009 ◽  
Vol 277 (1683) ◽  
pp. 861-868 ◽  
Author(s):  
Jeremy A. Goldbogen ◽  
Jean Potvin ◽  
Robert E. Shadwick

Rorqual whales (Balaenopteridae) represent not only some of the largest animals of all time, but also exhibit a wide range in intraspecific and interspecific body size. Balaenopterids are characterized by their extreme lunge-feeding behaviour, a dynamic process that involves the engulfment of a large volume of prey-laden water at a high energetic cost. To investigate the consequences of scale and morphology on lunge-feeding performance, we determined allometric equations for fin whale body dimensions and engulfment capacity. Our analysis demonstrates that larger fin whales have larger skulls and larger buccal cavities relative to body size. Together, these data suggest that engulfment volume is also allometric, increasing with body length as . The positive allometry of the skull is accompanied by negative allometry in the tail region. The relative shortening of the tail may represent a trade-off for investing all growth-related resources in the anterior region of the body. Although enhanced engulfment volume will increase foraging efficiency, the work (energy) required to accelerate the engulfed water mass during engulfment will be relatively higher in larger rorquals. If the mass-specific energetic cost of a lunge increases with body size, it will have major consequences for rorqual foraging ecology and evolution.


1948 ◽  
Vol 25 (3) ◽  
pp. 237-240 ◽  
Author(s):  
K. A. KERMACK

1. If the flow of water over the body of a Blue or a Fin whale be free from turbulence, the horse-power required per lb. of locomotory muscle is of the order of a tenth of the value estimated by Gray (1936) for the porpoise and dolphin. 2. If the flow be turbulent in these large whales the horse-power required per lb. of muscle agrees closely with Gray's estimate for the smaller Cetacea, or for the other types of mammalian muscle that have been investigated.


2019 ◽  
Vol 190 ◽  
pp. 25-39 ◽  
Author(s):  
Fannie W. Shabangu ◽  
Ken P. Findlay ◽  
Dawit Yemane ◽  
Kathleen M. Stafford ◽  
Marcel van den Berg ◽  
...  

2022 ◽  
Vol 8 ◽  
Author(s):  
Christiana Wittmaack ◽  
Jorge Urbán Ramírez ◽  
Daniela Bernot-Simon ◽  
Sergio Martínez-Aguilar ◽  
Seenivasan Subbiah ◽  
...  

Information on stress, reproductive fitness, and health is difficult to obtain in wild cetaceans but critical for conservation and management. The goal of this study was to develop a methodology requiring minimal blubber mass for analysis of reproductive and stress steroid hormones and, hence, suitable for cetacean biopsies. Blubber biopsies and samples were collected from free-ranging and stranded gray and fin whales. Steroid hormones were extracted from blubber samples as small as 50 mg using liquid-liquid extraction methodology developed to handle the high fat content of blubber. Samples were analyzed via liquid chromatography with tandem mass spectrometry for 10 hormones: aldosterone, androstenedione, cortisol, cortisone, corticosterone, 17β-estradiol, estrone, 17α-hydroxyprogesterone, progesterone, and testosterone. As part of the optimization, homogenization via bead beating and blade dispersion were compared, and the former found superior. To investigate optimal yet minimal tissue mass required, hormone panels were compared among paired 50, 150, and 400 mg samples, the latter two being commonly reported masses for hormone blubber analysis. Results indicated that 50 mg of blubber was suitable and sometimes superior. Additionally, significant differences in precision values were observed between species, possibly stemming from differences in blubber composition, and relevant to homogenization technique selection and calibration methods that use blubber matrix matches obtained from a species other than the study species. Based on recovery and precision values, our methodology was accurate and precise in the measurement of spiked known quantities for all 10 hormones, confirming the methodology capabilities in 50 mg blubber mass in both species. Altogether, and in our specific sample sets, all endogenous hormones, except corticosterone, were identified above the detection limit in 50 mg gray whale blubber samples while all endogenous hormones, except aldosterone, cortisone, estrone, and progesterone, were detected in 50 mg fin whale blubber samples. We present a robust methodology for the analysis of multiple reproductive and stress steroid hormones in minimal masses of cetacean blubber compatible with small biopsies. Finally, we identified statistically significant differences in corticosteroid concentrations between stranded and free ranging animals.


2021 ◽  
Vol 8 ◽  
Author(s):  
MJosé Pérez-Alvarez ◽  
Sebastián Kraft ◽  
Nicolás I. Segovia ◽  
Carlos Olavarría ◽  
Sergio Nigenda-Morales ◽  
...  

Four fin whale sub-species are currently considered valid: Balaenoptera physalus physalus in the North Atlantic, B. p. velifera in the North Pacific, B. p. quoyi and B. p. patachonica in the Southern Hemisphere. The last, not genetically validated, was described as a pygmy-type sub-species, found in low to mid latitudes of the Southern Hemisphere. Genetic analyses across hemispheres show strong phylogeographic structure, yet low geographic coverage in middle latitudes of the Southern Hemisphere impeded an assessment within the area, as well as evaluating the validity of B. p. patachonica. New mtDNA sequences from the Southeastern Pacific allowed an improved coverage of the species’ distribution. Our phylogenetic analyses showed three main lineages and contrasting phylogeographic patterns between Northern and Southern Hemispheres. Absence of recurrent female mediated gene flow between hemispheres was found; however, rare dispersal events revealing old migrations were noted. The absence of genetic structure suggests the existence of one single taxa within the Southern Hemisphere. Thus, until further evidence supporting this subspecies can be produced, such as genetic, ecological, behavioral, or morphological data, we propose that all fin whales from the Southern Hemisphere, including those from middle latitudes of the Southeastern Pacific belong to B. p. quoyi subspecies. This information is important for the current assessment of fin whales, contributing to the evaluation of the taxonomic classification and the conservation of the species.


Polar Record ◽  
2005 ◽  
Vol 41 (4) ◽  
pp. 281-304 ◽  
Author(s):  
William Barr ◽  
James P.C. Watt

On Christmas Eve 1923, the whaling factory ship Sir James Clark Ross, commanded by Captain Carl Anton Larsen and accompanied by five catchers, reached the front of the Ross Ice Shelf; these were the first whaling vessels to operate in the Ross Sea. They had been dispatched by the Norwegian whaling company Hvalfangeraktienselskapet Rosshavet, which had obtained a licence from the British government. For most of the 1923–24 season, Sir James Clark Ross occupied an uneasy anchorage in the deep waters of Discovery Inlet, a narrow embayment in the front of the Ross Ice Shelf, while her catchers pursued whales widely in the Ross Sea. During that first season they killed and processed 221 whales (211 blue whales and 10 fin whales), which yielded 17,300 barrels of oil. During the next decade, with the exception of the 1931–32 season, Sir James Clark Ross and two other factory ships operated by Rosshavet, C.A. Larsen and Sir James Clark Ross II, operated in the Ross Sea. From the 1926–27 season onwards these ships were joined by up to three other factory ships and their catchers, operated by other companies. During the decade 1923–33 the Rosshavet ships killed and processed 9122 whales in the Ross Sea sector, mainly in the open waters of the Ross Sea south of the pack-ice belt. Total harvest for all factory ships from the Ross Sea sector for the period was 18,238 whales (mainly blue whales) producing 1,490,948 barrels of oil. From 1924 onwards the Rosshavet catchers wintered in Paterson Inlet on Stewart Island, New Zealand, and from 1925 onwards a well-equipped shipyard, Kaipipi Shipyard, operated on Price Peninsula in Paterson Inlet to service the Rosshavet ships.


1992 ◽  
Vol 165 (1) ◽  
pp. 181-194 ◽  
Author(s):  
M. A. Castellini ◽  
G. L. Kooyman ◽  
P. J. Ponganis

The metabolic rates of freely diving Weddell seals were measured using modern methods of on-line computer analysis coupled to oxygen consumption instrumentation. Oxygen consumption values were collected during sleep, resting periods while awake and during diving periods with the seals breathing at the surface of the water in an experimental sea-ice hole in Antarctica. Oxygen consumption during diving was not elevated over resting values but was statistically about 1.5 times greater than sleeping values. The metabolic rate of diving declined with increasing dive duration, but there was no significant difference between resting rates and rates in dives lasting up to 82 min. Swimming speed, measured with a microprocessor velocity recorder, was constant in each animal. Calculations of the aerobic dive limit of these seals were made from the oxygen consumption values and demonstrated that most dives were within this theoretical limit. The results indicate that the cost of diving is remarkably low in Weddell seals relative to other diving mammals and birds.


2019 ◽  
Vol 116 (50) ◽  
pp. 25329-25332 ◽  
Author(s):  
J. A. Goldbogen ◽  
D. E. Cade ◽  
J. Calambokidis ◽  
M. F. Czapanskiy ◽  
J. Fahlbusch ◽  
...  

The biology of the blue whale has long fascinated physiologists because of the animal’s extreme size. Despite high energetic demands from a large body, low mass-specific metabolic rates are likely powered by low heart rates. Diving bradycardia should slow blood oxygen depletion and enhance dive time available for foraging at depth. However, blue whales exhibit a high-cost feeding mechanism, lunge feeding, whereby large volumes of prey-laden water are intermittently engulfed and filtered during dives. This paradox of such a large, slowly beating heart and the high cost of lunge feeding represents a unique test of our understanding of cardiac function, hemodynamics, and physiological limits to body size. Here, we used an electrocardiogram (ECG)-depth recorder tag to measure blue whale heart rates during foraging dives as deep as 184 m and as long as 16.5 min. Heart rates during dives were typically 4 to 8 beats min−1 (bpm) and as low as 2 bpm, while after-dive surface heart rates were 25 to 37 bpm, near the estimated maximum heart rate possible. Despite extreme bradycardia, we recorded a 2.5-fold increase above diving heart rate minima during the powered ascent phase of feeding lunges followed by a gradual decrease of heart rate during the prolonged glide as engulfed water is filtered. These heart rate dynamics explain the unique hemodynamic design in rorqual whales consisting of a large-diameter, highly compliant, elastic aortic arch that allows the aorta to accommodate blood ejected by the heart and maintain blood flow during the long and variable pauses between heartbeats.


2019 ◽  
Vol 100 (5) ◽  
pp. 1653-1670 ◽  
Author(s):  
Frederick I Archer ◽  
Robert L Brownell ◽  
Brittany L Hancock-Hanser ◽  
Phillip A Morin ◽  
Kelly M Robertson ◽  
...  

Abstract Three subspecies of fin whales (Balaenoptera physalus) are currently recognized, including the northern fin whale (B. p. physalus), the southern fin whale (B. p. quoyi), and the pygmy fin whale (B. p. patachonica). The Northern Hemisphere subspecies encompasses fin whales in both the North Atlantic and North Pacific oceans. A recent analysis of 154 mitogenome sequences of fin whales from these two ocean basins and the Southern Hemisphere suggested that the North Pacific and North Atlantic populations should be treated as different subspecies. Using these mitogenome sequences, in this study, we conduct analyses on a larger mtDNA control region data set, and on 23 single-nucleotide polymorphisms (SNPs) from 144 of the 154 samples in the mitogenome data set. Our results reveal that North Pacific and North Atlantic fin whales can be correctly assigned to their ocean basin with 99% accuracy. Results of the SNP analysis indicate a correct classification rate of 95%, very low rates of gene flow among ocean basins, and that distinct mitogenome matrilines in the North Pacific are interbreeding. These results indicate that North Pacific fin whales should be recognized as a separate subspecies, with the name B. p. velifera Cope in Scammon 1869 as the oldest available name.


PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0222004 ◽  
Author(s):  
Michael V. Westbury ◽  
Bent Petersen ◽  
Eline D. Lorenzen

Sign in / Sign up

Export Citation Format

Share Document