Gliding Flight of the Fulmar Petrel

1960 ◽  
Vol 37 (2) ◽  
pp. 330-338 ◽  
Author(s):  
C. J. PENNYCUICK

1. The basis used for estimating lift and drag coefficients is explained. A method of obtaining a photograph of a bird flying at known airspeed and rate of sink is described. 2. 96% of the speed measurements fall between 22 and 65 ft./sec., the average being 40 ft./sec. 3. A maximum lift coefficient of 1.8 can be achieved. Wing area is reduced with increasing speed. 4. The feet are used as airbrakes. 5. A comparison of the minimum drag coefficient (0.06) with the maximum estimated power output of the pectoral muscles leaves only a narrow margin of power available for climbing. 6. The performance diagram gives a minimum gliding angle of 1 in 8½, and a minimum sinking speed of just under 4 ft./sec. 7. The fulmar has apparently sacrificed the ability to soar dynamically over the sea in order to be able to fly slowly and thus utilize light upcurrents at cliff faces.

1976 ◽  
Vol 65 (2) ◽  
pp. 459-470 ◽  
Author(s):  
U. M. Norberg

Steady-state aerodynamic and momentum theories were used for calculations of the lift and drag coefficients of Plecotus auritus in hovering flight. The lift coefficient obtained varies between 3-1 and 6-4, and the drag coefficient between --5-0 and 10-5, for the possible assumptions regarding the effective angles of attack during the upstroke. This demonstrates that hovering flight in Plecotus auritus can not be explained by quasi-steady-state aerodynamics. Thus, non-steady-state aerodynamics must prevail.


Author(s):  
Elham Roozitalab ◽  
Masoud Kharati-Koopaee

In this research, the effect of Gurney flap on the aerodynamic behavior of an airfoil in mutational ground effect is investigated. To perform this, lift and drag coefficients of NACA 4412 airfoil section in the presence and absence of Gurney flap in mutational ground effect are evaluated and compared. To provide a better illustration of the effect of Gurney flap on the aerodynamic behavior of the airfoil section in the mutational ground effect, results are obtained during the takeoff and landing processes. Validation of the used numerical model is also performed by comparison of the obtained results with those of other works and reasonable agreements were seen. Results show that inclusion of Gurney flap to the airfoil leads to higher variations of lift and drag coefficients during takeoff and landing process. During the takeoff process, the flapped airfoil results in a higher lift decrement and drag increment although an increase in distance of airfoil from the ground or angle of attack causes the lift decrement of the flapped airfoil to get close to that of clean airfoil. It is shown that during takeoff process, downwash is generated around the airfoil as the airfoil leaves the step and as the airfoil gets away from the step, the generated downwash decreases. During the landing process, at each distance of airfoil form the ground and angle of attack, the lift decrement and drag increment of the flapped airfoil are significant compared to that of the clean airfoil. Results exhibit that during landing process, upwash is generated around the airfoil as the airfoil reaches the step and further airfoil move on the step leads to the decrease in the upwash. The decrement in lift coefficient and also the increment in drag coefficient during landing process are more remarkable than those in takeoff process.


1970 ◽  
Vol 53 (2) ◽  
pp. 363-374 ◽  
Author(s):  
G. CHRISTIAN PARROTT

1. A black vulture (mass = 1.79 kg) gliding freely in a wind tunnel adjusted its wing span and wing area as its air speed and glide angle changed from 9.9 to 16.8 m/s and from 4.8° to 7.9°, respectively. 2. The minimum sinking speed was 1.09 m/s at an air speed of 11.3 m/s. 3. The maximum ratio of lift to drag forces was 11.6 at an air speed of 13.9 m/s. 4. Parasite drag coefficients for the vulture are similar to those for conventional airfoils and do not support the contention that black vultures have unusually low values of parasite drag.


2014 ◽  
Vol 69 (7) ◽  
Author(s):  
Jaswar Koto ◽  
Abdul Khair Junaidi

Vortex-induced vibration is natural phenomena where an object is exposed to moving fluid caused vibration of the object. Vortex-induced vibration occurred due to vortex shedding behind the object. One of the offshore structures that experience this vortex-induced vibration is riser. The riser experience vortex-induced vibration due to vortex shedding caused by external load which is sea current. The effect of this vortex shedding to the riser is fatigue damage. Vortex-induced vibration of riser becomes the main concern in oil and gas industry since there will be a lots of money to be invested for the installation and maintenance of the riser. The previous studies of this vortex-induced vibration have been conducted by experimental method and Computational Fluid Dynamics (CFD) method in order to predict the vortex shedding behaviour behind the riser body for the determination of way to improve the riser design. This thesis represented the analysis of vortex induced vibration of rigid riser in two-dimensional. The analysis is conducted using Computational Fluid Dynamic (CFD) simulations at Reynolds number at 40, 200, 1000, and 1500. The simulations were performed using Spalart-Allmaras turbulent model to solve the transport equation of turbulent viscosity. The simulations results at Reynolds number 40 and 200 is compared with the other studies for the validation of the simulation, then further simulations were conducted at Reynolds number of 1000 and 1500. The coefficient of lift and drag were obtained from the simulations. The comparison of lift and drag coefficient between the simulation results in this study and experiment results from the other studies showed good agreement. Besides that, the in-line vibration and cross-flow vibration at different Reynolds number were also investigated. The drag coefficient obtained from the simulation results remain unchanged as the Reynolds number increased from 200 to 1500. The lift coefficient obtained from the simulations increased as the Reynolds number increased from 40 to 1500.


Author(s):  
Jeff R Kensrud ◽  
Lloyd V Smith

The following article considers lift and drag measurements of solid sports balls propelled through still air in a laboratory setting. The balls traveled at speeds ranging from 26 to 134 m/s with spin rates up to 3900 r/min. Light gates measured the speed and location of the balls at two locations from which lift and drag values were determined. Ball roughness varied from polished to rough surface protrusions, that is, seams as high as 1.5 mm. Lift and drag were observed to depend on speed, spin rate, surface roughness, and seam orientation. A drag crisis was observed on smooth balls as well as non-rotating seamed balls with seam heights less than 0.9 mm. The drag coefficient of approximately 0.42 was nearly constant with speed for spinning seamed balls with seam height greater than 0.9 mm. The still air drag coefficient of smooth balls was comparable to wind tunnel drag at low speeds ( Re < 2 × 105) and higher than wind tunnel results at high speeds ( Re > 2 × 105). The lift and drag coefficients of spinning balls increased with increasing spin rate. The lift coefficient of baseballs was not sensitive to ball orientation or seam height.


2015 ◽  
Vol 119 (1215) ◽  
pp. 663-672
Author(s):  
L. W. Traub ◽  
R. Waghela ◽  
E. M. Botero

AbstractIn this article, the effect of on-surface flow visualisation (SVF) techniques on measured loads over an airfoil are explored. Titanium dioxide based mixture effects on the lift and drag coefficient are experimentally quantified at low Reynolds numbers by recording the time history as the patterns evolve and freeze. With statistical comparison based on Student’s t-distribution method, it was determined that the effect on the drag coefficient was minimal but the lift coefficient was slightly attenuated. Additionally, it was observed that at high angles-of-attack the temporal history of the flow as the wind tunnel ramps up may alter the steady-state flow field in the presence of a SFV mixture.


2020 ◽  
Vol 01 (02) ◽  
pp. 29-36
Author(s):  
Md Rhyhanul Islam Pranto ◽  
Mohammad Ilias Inam

The aim of the work is to investigate the aerodynamic characteristics such as lift coefficient, drag coefficient, pressure distribution over a surface of an airfoil of NACA-4312. A commercial software ANSYS Fluent was used for these numerical simulations to calculate the aerodynamic characteristics of 2-D NACA-4312 airfoil at different angles of attack (α) at fixed Reynolds number (Re), equal to 5×10^5 . These simulations were solved using two different turbulence models, one was the Standard k-ε model with enhanced wall treatment and other was the SST k-ω model. Numerical results demonstrate that both models can produce similar results with little deviations. It was observed that both lift and drag coefficient increase at higher angles of attack, however lift coefficient starts to reduce at α =13° which is known as stalling condition. Numerical results also show that flow separations start at rare edge when the angle of attack is higher than 13° due to the reduction of lift coefficient.


2021 ◽  
Vol 2076 (1) ◽  
pp. 012069
Author(s):  
Rui Yin ◽  
Jing Huang ◽  
Zhi-Yuan He

Abstract Based on CFD, the flow field characteristics of NACA4412 airfoil are analyzed under pitching motion, and its aerodynamic characteristics are interpreted. The results show that streamline changes on the upper surface of the airfoil play a decisive role in the aerodynamic characteristics. The interaction between the vortex leads to fluctuations in the lift and drag coefficients. Under a big angle of attack, the secondary trailing vortex on the upper surface of the airfoil adheres to the trailing edge of the airfoil, resulting in an increased drag coefficient. Under a small angle of attack, the secondary trailing vortex can break away from the airfoil. The lift coefficient reaches the maximum value of 2.961 before the airfoil is turned upside down, and the drag coefficient reaches the maximum value of 1.515 after the airfoil is turned upside down, but the corresponding angles of attack of the two are equal.


1973 ◽  
Vol 58 (1) ◽  
pp. 225-237
Author(s):  
JERRY McGAHAN

1. Derived in a vector analysis with measurements of wind velocity and ground velocity of the bird, the following mean air speeds were obtained for birds crossing a Peruvian beach: 15 m/sec for 15 gliding Andean condors, 14 m/sec for 42 condors that flapped during the crossing, and 10 m/sec for five turkey vultures that flapped. For the 15 gliding condors a mean lift coefficient of 0.7 and a mean induced drag force of 3 N were computed. 2. Implausibly low values derived for parasite drag coefficient of the condor appeared to be due to (a) unmeasured forces of deceleration and (b) an undetected vertical component of the wind at the level of the flight path. Field data, adjusted by introducing a coefficient of parasite drag determined for the black vulture in a windtunnel study provided corrected estimates of drag. I secured an adjusted value of 14 for the L/D ratio of a condor gliding with wings fully extended. 3. A moderate flexion of the wings reducing the span by 20% is estimated to increase the optimum air speed from 13.9 to 15.2 m/sec for an adult male condor and from 12.6 to 13.8 m/sec for an adult female.


1997 ◽  
Vol 200 (3) ◽  
pp. 543-556 ◽  
Author(s):  
JM Wakeling ◽  
CP Ellington

The free gliding flight of the dragonfly Sympetrum sanguineum was filmed in a large flight enclosure. Reconstruction of the glide paths showed the flights to involve accelerations. Where the acceleration could be considered constant, the lift and drag forces acting on the dragonfly were calculated. The maximum lift coefficient (CL) recorded from these glides was 0.93; however, this is not necessarily the maximum possible from the wings. Lift and drag forces were additionally measured from isolated wings and bodies of S. sanguineum and the damselfly Calopteryx splendens in a steady air flow at Reynolds numbers of 700-2400 for the wings and 2500-15 000 for the bodies. The maximum lift coefficients (CL,max) were 1.07 for S. sanguineum and 1.15 for C. splendens, which are greater than those recorded for all other insects except the locust. The drag coefficient at zero angle of attack ranged between 0.07 and 0.14, being little more than the Blassius value predicted for flat plates. Dragonfly wings thus show exceptional steady-state aerodynamic properties in comparison with the wings of other insects. A resolved-flow model was tested on the body drag data. The parasite drag is significantly affected by viscous forces normal to the longitudinal body axis. The linear dependence of drag on velocity must thus be included in models to predict the parasite drag on dragonflies at non-zero body angles.


Sign in / Sign up

Export Citation Format

Share Document