Design and Evaluation Measurements of a Swirl Stabilized Laboratory Burner

Author(s):  
N G Orfanoudakis ◽  
A Hatziapostolou ◽  
K Krallis ◽  
N Vlachakis

This article presents gas velocity and temperature measurements obtained in a versatile multi-fuel swirl-stabilized laboratory burner of 100 kW total thermal input, which was designed as a scale model of a 110 MW coal burner operating in a cement rotary kiln. The laboratory burner is able to produce flames with different aerodynamic characteristics, namely, the independent adjustment of swirl to axial air and to burn a combination of gaseous, liquid, and pulverized solid fuels; only gaseous fuel, i.e. methane, was used in the present investigation. Experimental measurements were obtained in the near-burner region, with and without combustion, under varying operating conditions. The present investigation was mainly focused on the effect of swirl and its interaction with the combustion process.

Vehicles ◽  
2020 ◽  
Vol 2 (2) ◽  
pp. 318-341
Author(s):  
Chen Fu ◽  
Mesbah Uddin ◽  
Chunhui Zhang

With the fast-paced growth of computational horsepower and its affordability, computational fluid dynamics (CFD) has been rapidly evolving as a popular and effective tool for aerodynamic design and analysis in the automotive industry. In the real world, a road vehicle is subject to varying wind and operating conditions that affect its aerodynamic characteristics, and are difficult to reproduce in a traditional wind tunnel. CFD has the potential of becoming a cost-effective way of achieving this, through the application of different boundary conditions. Additionally, one can view wind tunnel testing, be it a fixed-floor or rolling road tunnel, as a physical simulation of actual on-road driving. The use of on-road track testing, and static-floor, and rolling-road wind tunnel measurements are common practices in industry. Subsequently, we investigated the influences of these test conditions and the related boundary conditions on the predictions of the aerodynamic characteristics of the flow field around a vehicle using CFD. A detailed full-scale model of Hyundai Veloster with two vehicle configurations, one with the original and the other with an improved spoiler, were tested using a commercial CFD code STAR-CCM+ from Siemens. Both vehicle configurations were simulated using four different test conditions, providing overall eight different sets of simulation settings. The CFD methodology was validated with experimental data from the Hyundai Aero-acoustic Wind Tunnel (HAWT), by accurately reproducing the test section with static floor boundary conditions. In order to investigate the effect of the blockage ratio on the aerodynamic predictions, the vehicle models were then tested with moving ground plus rotating wheel boundary conditions, using a total of four virtual wind tunnel configurations, with tunnel solid blockage ratios ranging from 1.25%, which corresponds to the actual HAWT, to 0.04%, which presents an open air driving condition.


1999 ◽  
Author(s):  
G. H. Abd Alla ◽  
H. A. Soliman ◽  
O. A. Badr ◽  
M. F. Abd Rabbo

Abstract A quasi-two zone predictive model developed in the present work for the prediction of the combustion processes in dual fuel engines and some of their performance features. Methane is used as the main fuel while employing a small quantity of liquid fuel (pilot) injected through the conventional diesel fuel system. This model emphasizes the effects of chemical kinetics activity of the premixed gaseous fuel on the combustion performance, while the role of the pilot fuel in the ignition and heat release processes is considered. A detailed chemical kinetic scheme consists of 178 elementary reaction steps and 41 chemical species is employed to describe the oxidation of the gaseous fuel from the start of compression to the end of expansion process. The associated formation and concentrations of exhaust emissions are correspondingly established. This combustion model is able to establish the development of the combustion process with time and the associated important operating parameters such as pressure, temperature, rates of energy release and composition. Predicted values for methane operation show good agreement with corresponding previous experimental values over a range of operating conditions mainly associated with high load operation.


Author(s):  
Yong Zhang ◽  
Yao Fang ◽  
Baosheng Jin ◽  
Youwei Zhang ◽  
Chunlei Zhou ◽  
...  

Abstract Numerical investigations of an anti-corrosion design and the combustion process (original conditions and optimal conditions) were conducted for a 660 MW opposed wall fired boiler. In order to solve high-temperature corrosion of the side wall, a scheme was proposed: slotting in the side wall and introducing air (closing-to-wall air) from the secondary air. The effect of anti-corrosion was disclosed in detail by varying the structures of slotting, gas velocities from nozzles and jet inclination angles. The temperature and NOx distribution in the furnace at optimized conditions were compared with those at the original operating conditions. Simulation results showed that the structures of the slot and gas velocities from the nozzles had a marked effect on anti-corrosion of the side wall. When the gas velocity was 4 m/s, an inclination angle of the gas velocity was not conducive to anti-corrosion of the side wall. When the gas velocity increased at the middle and bottom of the side wall, the anti-corrosion effect increased significantly. When the optimal scheme was adopted, the corrosion area of the side wall decreased obviously, but the furnace temperature and the NOx emission increased slightly. The detailed results of this work promote a full understanding of closing-to-wall air and could help to reduce the corrosive area in pulverized-coal furnaces or boilers.


2018 ◽  
Vol 90 (9) ◽  
pp. 1355-1363
Author(s):  
Florian Knoth ◽  
Christian Breitsamter

PurposeAerodynamic characteristics of engine side air intakes for a lightweight helicopter are investigated aiming to achieve an efficient engine airframe integration. Design/methodology/approachOn a novel full-scale model of a helicopter fuselage section, a comprehensive experimental data set is obtained by wind tunnel testing. Different plenum chamber types along with static side intake and semi-dynamic side intake configurations are considered. Engine mass flow rates corresponding to the power requirements of realistic helicopter operating conditions are reproduced. For a variety of freestream velocities and mass flow rates, five-hole pressure probe data in the aerodynamic interface plane and local surface pressure distributions are compared for the geometries. FindingsIn low-speed conditions, unshielded, sideways facing air intakes yield lowest distortion levels and total pressure losses. In fast forward flight condition, a forward-facing intake shape is most beneficial. Additionally, the influence of an intake grid and plenum chamber splitter is evaluated. Originality/valueThe intake testing approach and the trends found can be applied to other novel helicopter intakes in early development stages to improve engine airframe integration and decrease development times.


2018 ◽  
Vol 77 (4) ◽  
pp. 222-229 ◽  
Author(s):  
A. V. Paranin ◽  
A. B. Batrashov

The article compares the results of calculation of the finite element simulation of current and temperature distribution in the scale model of the DC catenary with the data of laboratory tests. Researches were carried on various versions of the structural design of catenary model, reflecting the topological features of the wire connection, characteristic of the DC contact network. The proportions of the cross-sectional area of the scaled model wires are comparable to each other with the corresponding values for real DC catenary. The article deals with the operating conditions of the catenary model in the modes of transit and current collection. When studying the operation of the scale catenary model in the transit mode, the effect of the structural elements on the current distribution and heating of the wires was obtained. Within the framework of the scale model, theoretical assumptions about the current overload of the supporting cable near the middle anchoring have been confirmed. In the current collection mode, the experimental dependences of the current in the transverse wires of the scale model are obtained from the coordinate of the current collection point. Using the model it was experimentally confirmed that in the section of the contact wire with local wear, not only the temperature rise occurs but also the current redistribution due to the smaller cross section. Thus, the current share in other longitudinal wires of the scale model increases and their temperature rises. Scale and mathematical models are constructed with allowance for laboratory clamps and supporting elements that participate in the removal of heat from the investigated wires. Obtained study results of the scale model allow to draw a conclusion about the adequacy of the mathematical model and its correspondence to the real physical process. These conclusions indicate the possibility of applying mathematical model for calculating real catenary, taking into account the uneven contact wear wire and the armature of the contact network.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alberto Palma ◽  
Javier Mauricio Loaiza ◽  
Manuel J. Díaz ◽  
Juan Carlos García ◽  
Inmaculada Giráldez ◽  
...  

Abstract Background Burning fast-growing trees for energy production can be an effective alternative to coal combustion. Thus, lignocellulosic material, which can be used to obtain chemicals with a high added value, is highly abundant, easily renewed and usually inexpensive. In this work, hemicellulose extraction by acid hydrolysis of plant biomass from three different crops (Chamaecytisus proliferus, Leucaena diversifolia and Paulownia trihybrid) was modelled and the resulting solid residues were used for energy production. Results The influence of the nature of the lignocellulosic raw material and the operating conditions used to extract the hemicellulose fraction on the heat capacity and activation energy of the subsequent combustion process was examined. The heat power and the activation energy of the combustion process were found to depend markedly on the hemicellulose content of the raw material. Thus, a low content in hemicelluloses resulted in a lower increased energy yield after acid hydrolysis stage. The process was also influenced by the operating conditions of the acid hydrolysis treatment, which increased the gross calorific value (GCV) of the solid residue by 0.6–9.7% relative to the starting material. In addition, the activation energy of combustion of the acid hydrolysis residues from Chamaecytisus proliferus (Tagasaste) and Paulownia trihybrid (Paulownia) was considerably lower than that for the starting materials, the difference increasing with increasing degree of conversion as well as with increasing temperature and acid concentration in the acid hydrolysis. The activation energy of combustion of the solid residues from acid hydrolysis of tagasaste and paulownia decreased markedly with increasing degree of conversion, and also with increasing temperature and acid concentration in the acid hydrolysis treatment. No similar trend was observed in Leucaena diversifolia (Leucaena) owing to its low content in hemicelluloses. Conclusions Acid hydrolysis of tagasaste, leucaena and paulownia provided a valorizable liquor containing a large amount of hemicelluloses and a solid residue with an increased heat power amenable to efficient valorization by combustion. There are many potential applications of the hemicelluloses-rich and lignin-rich fraction, for example as multi-components of bio-based feedstocks for 3D printing, for energy and other value-added chemicals.


2009 ◽  
Vol 46 (01) ◽  
pp. 27-33
Author(s):  
Pekka Ruponen ◽  
Jerzy Matusiak ◽  
Janne Luukkonen ◽  
Mikko Ilus

The water in a swimming pool on the top deck of a large passenger ship can be excited to a resonant motion, even in a moderate sea state. The motion of the water in the pool is mainly caused by longitudinal acceleration, resulting from the ship's pitch and surge motions. At resonance, there can be high waves in the pool and splashing of water. In this study the behavior of the Solarium Pool of the Freedom of the Seas was examined in various sea states and operating conditions. The motions of the pool were calculated on the basis of a linear seakeeping method, and the behavior of the water in the pool was studied with experimental model tests. A large-scale model of the pool was constructed and fitted to a purpose-built test bench that could be axially moved by a computer-controlled hydraulic cylinder. Water elevation in the pool was measured, and all tests were video recorded. Different modifications of the pool were tested to improve the behavior of the pool. A strong correlation between the longitudinal motion and the behavior of the water in the pool was found.


Author(s):  
A. G. Zhuravlev ◽  
M. V. Isakov

The high importance of optimizing the operation of quarry transport is confirmed by the leading share of its costs in the total cost of mining. The current direction of optimization is the development and implementation of digital technologies for processing complex data on the parameters of transport vehicles. The solution of the above issues should be based on the results of scientific research on the collection and processing of information. Developed a set of techniques to perform experimental measurements of working parameters of mining dump trucks as part of a special unit experiments, and long monitoring measurements. A set of equipment for performing experimental measurements, as well as its installation on a dump truck is presented. The data of experimental measurements and a methodical approach to their analysis are presented. In particular, it shows the identification of operating modes of the power plant and the construction of the load diagram, the identification of elements of the transport cycle, etc. The approach to substantiation of innovative designs of power plants adapted to the conditions of a particular quarry is shown on the example of calculated schedules of energy consumption and reserve of recovery of braking energy. The proposed hardware-methodical complex is a research model for the development of methods for automated data collection and processing in the formation of elements of digital mining production.


Sign in / Sign up

Export Citation Format

Share Document