The influence of rotation speed on the bending fatigue lifetime of steel wire ropes

Author(s):  
Y A Onur ◽  
C E İmrak

This article presents experimental investigations to determine the influence of rotation speed on the bending fatigue lifetime of rotation-resistant rope and non-rotation-resistant rope. Heat generated by the rotation speed on steel wire rope samples has been measured by a thermal camera. Two sheaves with different diameters have been used to obtain the effect of sheave diameters on the heat alterations and bending fatigue lifetime. Two experimental tests have been conducted to determine the effect of insufficient lubrication on the bending fatigue lifetime. The results indicate that rotation speed affects the steel wire rope lifetime subjected to bending fatigue.

Author(s):  
Tuğba Özge Onur ◽  
Yusuf Aytaç Onur

Steel wire ropes are frequently subjected to dynamic reciprocal bending movement over sheaves or drums in cranes, elevators, mine hoists, and aerial ropeways. This kind of movement initiates fatigue damage on the ropes. It is a quite significant case to know bending cycles to failure of rope in service which is also known as bending over sheave fatigue lifetime. It helps to take precaution in the plant in advance and eliminate catastrophic accidents due to usage of rope when allowable bending cycles are exceeded. To determine bending fatigue lifetime of ropes, experimental studies are conducted. However, bending over sheave fatigue testing in laboratory environments require high initial preparation cost and longer time to finalize the experiments. Due to those reasons, this chapter focuses on a novel prediction perspective to the bending over sheave fatigue lifetime of steel wire ropes by means of artificial neural networks.


2011 ◽  
Vol 127 ◽  
pp. 344-349
Author(s):  
Zhi Hui Hu ◽  
Ji Quan Hu

Fatigue failure behaviors caused by wire ropes bending-over-sheaves are discussed in the paper. Stress conditions of wire ropes bending-over-sheaves and the mechanism of damage to wire rope caused by fleet angel and angle of wrap is analyzed, the fatigue failure mechanism of wire ropes is investigated in the paper. The investigation indicates that the load and the mechanical damage of ropes bending-over-sheaves is very complex, and the fatigue failure of ropes bending-over-sheaves is the result of combined action of bending fatigue and various kinds of damage. The research will have implications to design and use of wire rope.


2020 ◽  
pp. 136943322097172
Author(s):  
Yihua Zeng ◽  
Xinghua Li ◽  
Amira Hamdy Ali Ahmed ◽  
Gang Wu

The externally bonded (EB) carbon fiber reinforced polymer (CFRP), near-surface-mounted (NSM) CFRP and the prestressed steel wire ropes (P-SWRs) has been proven to be feasible and reliable flexural strengthening methods for concrete structures. However, debonding issues in EB CFRP sheets (or NSM CFRP bars) and space requirements for edge and spacing clearance of NSM CFRP bars (or P-SWRs) has limited the application of these three strengthening techniques. Therefore, the combinations of these methods need to be investigated and clarified. In this paper, experimental investigations on the flexural performances of seven concrete beams are presented, in which three of the beams were separately strengthened with EB CFRP sheets, NSM CFRP bars, and P-SWRs, respectively, and three of the beams were combinedly strengthened with two of the three techniques. Test results demonstrated that the flexural performances of beams strengthened with the combination with EB CFRP sheets, NSM CFRP bars, and P-SWRs are between the flexural performances of the beams strengthened with the corresponding individual strengthening techniques. It is found that the P-SWRs is favorable for combinations. In case the P-SWRs was combined with EB CFRP sheets or NSM CFRP bars for strengthening, the cracking load was increased to more than 230% and the maximum ultimate load-bearing capacity was increased to 150% when compared with the control beam. The debonding which occurred more or less in the beams strengthened with EB CFRP sheets or NSM CFRP bars or their combination was successfully eliminated by using the combination strengthening technique with P-SWRs. Also, the combination of P-SWRs with EB CFRP sheets or NSM CFRP bars is also favorable to improve the ductility of strengthened beams.


2012 ◽  
Vol 591-593 ◽  
pp. 1603-1606 ◽  
Author(s):  
Peng Liu ◽  
Xin Zhang ◽  
Ya Kun Huang ◽  
Ji Xu Rong

This article introduces unbalance phenomenon when several steel wire ropes hoist skip and some main methods of measuring steel wire ropes tension in coal mine. Use the strain effects to design a sensor which can be used to measure the tension of steel wire rope, to provide reliable data for the subsequent online tension inspection system. In order to facilitate the sensor in this system, the height of the sensor needs to be low enough. As one of the most important parts of the strain sensor, the elastic body is also low-height. To solve that problem, first using the SolidWorks software modeling and analysis of elastic body to design the sizes and obtain the best patch position of strain gauge.


2014 ◽  
Vol 683 ◽  
pp. 3-8
Author(s):  
Jozef Krešák ◽  
Pavel Peterka ◽  
Stanislav Kropuch ◽  
Andrea Bérešová

A rope is an important, highly effective and one of the oldest transportation systems used in transport by mankind. Nowadays, steel ropes are mainly used for moving loads in mining - coal and ore exploitation, vertical or horizontal transport of persons and goods by cranes, elevators, lifts and cable ways. In many cases steel wire ropes are employed in extreme conditions with respect to the load of the rope: high temperature plants, mining corrosive environments and etc. In terms of labor safety it is necessary to certify each rope people come in contact when working with loads or a rope is used for transportation. It has to be done earlier than a rope is put into operation or on the market. Despite the fact the tests were performed correctly, a rope may not achieve the desired rope life. The great impact on the life of a wire rope has its interaction with a device a rope is deployed on. Interaction of a steel wire rope with a device it is deployed on has a great impact on its life. Durability is also affected by the way a rope is loaded, its maintenance and regular re-examination as well as its construction. Design accuracy is assessed according to strength and deformation properties of wires a rope is made of and a rope cross-section construction is taken in account as well. The important aspect of steel wire rope durability (which can be mostly influenced by a manufacturer) is an appropriate design of diameters and angles of wires winding in accordance with exactly defined conditions of operation. The paper presents models of ropes equally loaded which eliminates the most unfavorable factors affecting their life cycle.


Materials ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3439
Author(s):  
Carmen Debeleac ◽  
Silviu Nastac ◽  
Gina Diana Musca (Anghelache)

This paper deals with the area of structural damage monitoring of steel strands wire ropes embedded into various equipment and mechanical systems. Of the currently available techniques and methods for wire ropes health monitoring, the authors focused on the group of techniques based on operational dynamics investigation of such systems. Beyond the capability and efficiency of both occasionally and continuously monitoring application, the dynamics-based methods are able to provide additional information regarding the structural integrity and functional operability of the entire ensemble embedding the wire ropes. This paper presents the results gained by the authors using a laboratory setup that can simulate the operational condition usually used for regular applications of wire ropes. The investigations were conducted on three directions of acquired signals post-processing. Firstly, the classical fast Fourier transform was used to evaluate the potential changes within the spectral distribution of transitory response. The other two directions involved high-order spectral analyses in terms of bi-spectrum and Wigner–Ville distribution and multi-scale analysis based methods such as complex wavelet cross-correlation and complex wavelet coherency. The results indicate that each direction of analysis can provide suitable information regarding potential wire rope damage, but the ensemble of post-processing methods offers supplementary precision.


2014 ◽  
Vol 683 ◽  
pp. 55-60 ◽  
Author(s):  
Michal Lesňák ◽  
Jan Procházka ◽  
Ivo Hlavatý ◽  
Jaromír Pištora ◽  
Gabriela Kostiuková

This article deals with the study of defects in steel wire. In the study we model magnetic fields around rope genetated by magnetized part of rope. The work is based on the finite element program ANSYS. For the purposes of the experiments we consider one strand wire rope construction. We define different kinds of defects and faults. The shape of the magnetic induction lines of generated fields depends on the size of the defect, the depth of rope violation or the presence of other nearby defects. The location and number of disturbances have been chosen to achieve the most versatile outputs. All of these modifications were analyzed and the results displayed in the 3D colored.


2022 ◽  
pp. 648-667
Author(s):  
Tuğba Özge Onur ◽  
Yusuf Aytaç Onur

Steel wire ropes are frequently subjected to dynamic reciprocal bending movement over sheaves or drums in cranes, elevators, mine hoists, and aerial ropeways. This kind of movement initiates fatigue damage on the ropes. It is a quite significant case to know bending cycles to failure of rope in service, which is also known as bending over sheave fatigue lifetime. It helps to take precautions in the plant in advance and eliminate catastrophic accidents due to the usage of rope when allowable bending cycles are exceeded. To determine the bending fatigue lifetime of ropes, experimental studies are conducted. However, bending over sheave fatigue testing in laboratory environments require high initial preparation cost and a long time to finalize the experiments. Due to those reasons, this chapter focuses on a novel prediction perspective to the bending over sheave fatigue lifetime of steel wire ropes by means of artificial neural networks.


2014 ◽  
Vol 683 ◽  
pp. 22-27 ◽  
Author(s):  
Ján Boroška ◽  
Alena Pauliková ◽  
Vladimír Ivančo

Modulus of elasticity of steel wire rope (elastic modulus) is a characteristic value, which is important not only for users of the steel rope, but also for designers of machines and machinery that are equipped with the steel wire rope. Values of the elastic modulus depends predominately on the elastic modulus of the material, which the rope is manufactured from as well as it depends on the various other factors. The most important influencing factors are as follows: rope construction, type of core, angle and way of wire stranding, angle and way of rope lay as well as kind of lubricant. The real value of the elastic modulus has also impact on prolongation of the steel wire rope and on intensity of its dynamical loading. The rope elastic modulus value can be determined by means of the various methods. There are analysed in this article such methods for determination of the rope elastic modulus, which can be applied for a computer simulation.


Sign in / Sign up

Export Citation Format

Share Document