Taguchi-fuzzy-based approach for the sensitivity analysis of a four-bar function generator

Author(s):  
F-C Chen ◽  
H-H Huang

This article aims to use the Taguchi method coupled with fuzzy logic on the tolerance sensitivity analysis of a four-bar function generator. Experiments designed by the Taguchi method were carried out for obtaining the mean and the maximum displacement variations of the function generator. By converting these two variations into a multiple performance index by means of fuzzy logic, the effect of each control factor on the mechanism quality was further analysed. The Taguchi method coupled with fuzzy logic was used to systematically analyse the effect of individual control factors on the displacement variations of a four-bar function generator from which the key dimensions were identified.

2010 ◽  
Vol 34 (2) ◽  
pp. 277-293 ◽  
Author(s):  
Fu-Chen Chen ◽  
Yih-Fong Tzeng ◽  
Meng-Hui Hsu ◽  
Wei-Ren Chen

A hybrid approach of combining Taguchi method, principal component analysis and fuzzy logic for the tolerance design of a dual-purpose six-bar mechanism is proposed. The approach is to firstly use the Taguchi orthogonal array to carry out experiments for calculating the S/N ratios of the positional errors to the angular error of the dual-purpose six-bar mechanism. The principal component analysis is then applied to determine the principal components of the S/N ratios, which are transformed via fuzzy logic reasoning into a multiple performance index (MPI) for further analysis of the effect of each control factors on the quality of the mechanism. Through the analysis of response table and diagram, key dimensional tolerances can be classified, which allows the decision of either to tighten the key tolerances to improve mechanism quality or to relax the tolerance of non-key dimensions to reduce manufacturing costs to be made.


Author(s):  
Fu-Chen Chen ◽  
Hsing-Hui Huang

The purpose of this paper is to use the Taguchi method on the tolerance design of a four-bar function generator in order to obtain the structural error that is insensitive to variations in manufacturing tolerance and joint clearance. The contribution of each control factor to the variations was also examined to further determine if the tolerance of the factor should be tightened to improve the precision of the mechanism. From the study of the four-bar function generator, it was revealed that the control factor B had the most significant effect on the variation of the structural errors. These were closely followed by factors E, C and D. On the whole, experimental errors contributed only 2.69% to the structural errors, much smaller than the contribution by individual factors, indicating that the design of the experiments was appropriate and the results were highly reliable. By tightening the tolerance, it is apparent that the mean of structural errors is reduced by 0.227 and the change in variance is 69.81% of the initial value, i.e. a reduction of 30.19%.


2005 ◽  
Vol 29 (3) ◽  
pp. 477-489
Author(s):  
Fu-Chen Chen ◽  
Hsing-Hui Huang

In this paper fuzzy logic was applied to the Taguchi method to design the dimensional tolerances of a six-bar hinge mechanism with multiple performance characteristics (MPC). A fuzzy logic system was used to determine the relationship between the S/N (signal to noise) ratios of the position and the angle error for assessing the level of importance of each control factor in the hinge mechanism. The contribution of each control factor to the variations was also quantified through the response table and response diagram and the key dimensions found to significantly affect the quality of the mechanism were r4, β, r1 and r5, which contributed 67.77% of the total product variation. It followed therefore that in order to improve the quality of the mechanism the tolerance of these factors must be tightened. Through a series of confirmation experiments, it was revealed that tightening the tolerance resulted in an increase in the multiple performance index (MPI) by 0.094, which was an increase of 19.87% of the initial value.


Author(s):  
FU-CHEN CHEN ◽  
YIH-FONG TZENG

This paper uses the Taguchi method on the tolerance design of a hinge mechanism with the aim of obtaining a design that is insensitive to variations in manufacturing tolerance and joint clearance. The contribution of each control factor in the mechanism to the variations was also quantified. From the analysis of the response table and diagram, it was concluded that the dimension r1, r2, r4 and β had a significant effect on the quality of the mechanism, contributing a total of 82.36% to product variation and were consequently named the key dimensions. The tolerance of these factors must therefore be tightened to improve the quality of the mechanism. Through a series of confirmation experiments, it was revealed that tightening the tolerance resulted in an increase in the S/N (signal to noise) ratio by 1.851 db and a reduction in product variation by 19.25% from the original 80.75%. The proposed method does not require complex mathematical derivatives, but simply the input and output relationship of the system. The method proposed in this study can be applied to all types of mechanism.


Author(s):  
F C Chen ◽  
Y F Tzeng ◽  
W R Chen ◽  
M H Hsu

In this paper, the Taguchi method and the principal component analysis were applied to a dual-purpose six-bar mechanism for investigating the influence of manufacturing tolerance and joint clearance on the quality of the mechanism. Experiments were carried out based on the orthogonal array from the Taguchi method, which calculated the S/ N ratios of the positional and angular errors of a dual-purpose six-bar mechanism. Using the principal component analysis, the S/ N ratios were transformed into a multiple performance index to further understand the effect of the control factors on the quality of the six-bar mechanism. Using the analysis of response table and response diagram, the key dimensions of the mechanism could be identified and their tolerance optimized, i.e. decreasing the tolerance of important dimensions and increasing the rest, with the objective of simultaneously improving the quality of the mechanism and reducing the cost.


2019 ◽  
Vol 70 (1) ◽  
pp. 26-29 ◽  
Author(s):  
Tinevimbo Shiri ◽  
Angela Loyse ◽  
Lawrence Mwenge ◽  
Tao Chen ◽  
Shabir Lakhi ◽  
...  

Abstract Background Mortality from cryptococcal meningitis remains very high in Africa. In the Advancing Cryptococcal Meningitis Treatment for Africa (ACTA) trial, 2 weeks of fluconazole (FLU) plus flucytosine (5FC) was as effective and less costly than 2 weeks of amphotericin-based regimens. However, many African settings treat with FLU monotherapy, and the cost-effectiveness of adding 5FC to FLU is uncertain. Methods The effectiveness and costs of FLU+5FC were taken from ACTA, which included a costing analysis at the Zambian site. The effectiveness of FLU was derived from cohorts of consecutively enrolled patients, managed in respects other than drug therapy, as were participants in ACTA. FLU costs were derived from costs of FLU+5FC in ACTA, by subtracting 5FC drug and monitoring costs. The cost-effectiveness of FLU+5FC vs FLU alone was measured as the incremental cost-effectiveness ratio (ICER). A probabilistic sensitivity analysis assessed uncertainties and a bivariate deterministic sensitivity analysis examined the impact of varying mortality and 5FC drug costs on the ICER. Results The mean costs per patient were US $847 (95% confidence interval [CI] $776–927) for FLU+5FC, and US $628 (95% CI $557–709) for FLU. The 10-week mortality rate was 35.1% (95% CI 28.9–41.7%) with FLU+5FC and 53.8% (95% CI 43.1–64.1%) with FLU. At the current 5FC price of US $1.30 per 500 mg tablet, the ICER of 5FC+FLU versus FLU alone was US $65 (95% CI $28–208) per life-year saved. Reducing the 5FC cost to between US $0.80 and US $0.40 per 500 mg resulted in an ICER between US $44 and US $28 per life-year saved. Conclusions The addition of 5FC to FLU is cost-effective for cryptococcal meningitis treatment in Africa and, if made available widely, could substantially reduce mortality rates among human immunodeficiency virus–infected persons in Africa.


IEEE Access ◽  
2016 ◽  
Vol 4 ◽  
pp. 3034-3045 ◽  
Author(s):  
Jinn-Tsong Tsai ◽  
Cheng-Chung Chang ◽  
Wen-Ping Chen ◽  
Jyh-Horng Chou

Author(s):  
Menderes Kam ◽  
Mustafa Demirtaş

This study analyzed the tool vibration (Vib) and surface roughness (Ra) during turning of AISI 4340 (34CrNiMo6) tempered steel samples using Taguchi Method. In this context, Taguchi design L18 (21 × 32) was used to analyze the experimental results. The vibration amplitude values from cutting tools were recorded for different machining parameters, control factors; two different sample hardness (46 and 53 HRc), three different cutting speeds (180, 220, 260 m.min−1), and feed rates (0.08, 0.14, 0.20 mm.rev−1) were selected. The machining parameters giving optimum Vib and Ra values were determined. Regression analysis is applied to predict values of Vib and Ra. Analysis of variance was used to determine the effects of machining parameters on the Vib and Ra values. The most important machining parameters were found to be the feed rate, sample hardness, and cutting speed for Vib and Ra, respectively. The lowest Vib and Ra values were obtained in 46 HRc sample as 0.0022 gRMS and 0.255 µm, respectively. The surface quality can be improved by reducing the sources of vibration by using appropriate machining parameters. As a result, there is a significant relationship between Ra and Vib. The lower Ra values were found during turning process of tempered steel samples according to the literature studies. It is suggested that the process can be preferred as an alternative process to grinding process due to lower cost and machining time. In application of the turning of experiment samples by ceramic cutting tool, a substantial technological and economical benefit has been observed.


2011 ◽  
Vol 27 (3) ◽  
pp. 309-320 ◽  
Author(s):  
C.-Y. Fan ◽  
C.-K. Chao ◽  
C.-C. Hsu ◽  
K.-H. Chao

ABSTRACTAnterior Lumbar Interbody Fusion (ALIF) has been widely used to treat internal disc degeneration. However, different cage positions and their orientations may affect the initial stability leading to different fusion results. The purpose of the present study is to investigate the optimum cage position and orientation for aiding an ALIF having a transfacet pedicle screw fixation (TFPS). A three-dimensional finite element model (ALIF with TFPS) has been developed to simulate the stability of the L4/L5 fusion segment under five different loading conditions. The Taguchi method was used to evaluate the optimized placement of the cages. Three control factors and two noise factors were included in the parameter design. The control factors included the anterior-posterior position, the medio-lateral position, and the convergent-divergent angle between the two cages. The compressive preload and the strengths of the cancellous bone were set as noise factors. From the results of the FEA and the Taguchi method, we suggest that the optimal cage positioning has a wide anterior placement, and a diverging angle between the two cages. The results show that the optimum cage position simultaneously contributes to a stronger support of the anterior column and lowers the risk of TFPS loosening.


Sign in / Sign up

Export Citation Format

Share Document