Experimental investigations of the effect of biodiesel utilization on lubricating oil tribology in diesel engines

Author(s):  
A K Agarwal

Biodiesel is an alternative fuel derived from vegetable oils by modifying their molecular structure through a transesterification process. Linseed oil methyl ester (LOME) was prepared using methanol in the presence of potassium hydroxide as a catalyst. The use of LOME in compression ignition engines was found to develop a very compatible engine-fuel system with lower emission characteristics. Two identical engines were subjected to long-term endurance tests, fuelled by an optimum biodiesel blend (20 per cent LOME) and diesel oil, respectively. Various tribological studies on lubricating oil samples drawn at regular intervals from both engines were conducted in order to correlate the comparative performance of the two fuels and the effect of fuel chemistry on lubricating oil performance and life. A number of tests were conducted in order to evaluate the comparative performances of the two fuels such as density measurement, viscosity measurements, Flashpoint determination, moisture content determination, pentane and benzene insolubles, thin layer chromatography, differential scanning calorimetry, etc. All these tests were used for an indirect interpretation of the comparative performance of these fuels. The performance of biodiesel fuel is found to be superior to that of diesel oil and the lubricating oil life is found to be longer while operating the engine on biodiesel

2003 ◽  
Vol 125 (3) ◽  
pp. 820-826 ◽  
Author(s):  
A. K. Agarwal ◽  
J. Bijwe ◽  
L. M. Das

Biodiesel is prepared using linseed oil and methanol by the process of transesterification. Use of linseed oil methyl ester (LOME) in a compression ignition engine was found to develop a highly compatible engine-fuel system with low emission characteristics. Two similar engines were operated using optimum biodiesel blend and mineral diesel oil, respectively. These were subjected to long-term endurance tests. Lubricating oil samples drawn from both engines after a fixed interval were subjected to elemental analysis. Quantification of various metal debris concentrations was done by atomic absorption spectroscopy (AAS). Wear metals were found to be about 30% lower for a biodiesel-operated engine system. Lubricating oil samples were also subjected to ferrography indicating lower wear debris concentrations for a biodiesel-operated engine. The additional lubricating property of LOME present in the fuel resulted in lower wear and improved life of moving components in a biodiesel-fuelled engine. However, this needed experimental verification and quantification. A series of experiments were thus conducted to compare the lubricity of various concentrations of LOME in biodiesel blends. Long duration tests were conducted using reciprocating motion in an SRV optimol wear tester to evaluate the coefficient of friction, specific wear rates, etc. The extent of damage, coefficient of friction, and specific wear rates decreased with increase in the percentage of LOME in the biodiesel blend. Scanning electron microscopy was conducted on the surfaces exposed to wear. The disk and pin using 20% biodiesel blend as the lubricating oil showed lesser damage compared to the one subjected to diesel oil as the lubricating fluid, confirming additional lubricity of biodiesel.


Author(s):  
Purnanand V. Bhale ◽  
Nishikant V. Deshpande ◽  
Piyush N. Deshpande

The gradual depletion of world petroleum reserves, increases in prices of petroleum based fuels and environmental pollution due to exhaust emissions have encouraged studies to search for alternative fuels. Biodiesel is an alternative diesel fuel consisting of alkyl monoesters of fatty acids derived from vegetable oils. It has been the focus of considerable amount of recent research because it is renewable and reduces the emission of some pollutants. The desirability of developing biodiesel from different tree borne oil seeds and decreasing the dependency on petroleum based fuels has been discussed by many over the last few decades. However some of the important issues like compatibility of biodiesel with the crankcase lubricating oil, thermal stability of lubricating oil with biodiesel usage, changes in physical and chemical properties of lubricating oil with biodiesel etc. have not been sufficiently investigated. This needs to be addressed in order to ensure the long term acceptability of biodiesel in an existing family of diesel engines. In the present work these issues have been addressed. For this purpose engine endurance tests were conducted on CI engines. Two new single cylinder four stroke CI engines were operated for 512 hours each for diesel and 100% biodiesel fuel. The endurance tests were conducted as per BIS 10000 part IX norms. Biodiesel from Jatropha oil was prepared in-house using transesterification process. The sample of lubricating oil was collected through a one way valve connected to the crankcase sump after every 128 hours intervals. Thermograviometric analysis (TGA) was used to evaluate the thermal stability of lubricating oil samples obtained from both the engines. The thermal decomposition of lubricating oil samples were measured as a function of various reaction parameters such as temperature, time and heating rates. This TGA test involves a weight change as the oil was heated. The weight loss data of the sample was logged using the in situ computer. Early decomposition of biodiesel fueled engine lubricating oil was observed as compared to diesel fueled engine lubricating oil. The changes in viscosity of lubricating oil were also monitored during the endurance test and discussed in detail. A higher level of crank case dilution was observed in case of biodiesel as compared to diesel.


Author(s):  
Avinash Kumar Agarwal ◽  
Jayashree Bijwe ◽  
L. M. Das

Abstract Biodiesel is prepared using linseed oil and methanol by the process of transesterification. Use of linseed oil methyl ester (LOME) in compression ignition engine was found to develop a highly compatible engine-fuel system with low emission characteristics. Two similar engines were operated using optimum biodiesel blend and mineral diesel oil respectively. These were subjected to long-term endurance tests. Lubricating oil samples drawn from both engines after a fixed interval were subjected to elemental analysis. Quantification of various metal debris concentrations was done by atomic absorption spectroscopy (AAS). Wear metals were found to be about 30% lower for biodiesel-operated engine system. Lubricating oil samples were also subjected to ferrography indicating lower wear debris concentrations for biodiesel-operated engine. The additional lubricating property of LOME present in the fuel resulted in lower wear and improved life of moving components in biodiesel-fuelled engine. However, this needed experimental verification and quantification. A series of experiments were thus conducted to compare the lubricity of various concentrations of LOME in biodiesel blends. Long duration tests were conducted using reciprocating motion in SRV optimol wear tester to evaluate the coefficient of friction, specific wear rates, etc. The extent of damage, coefficient of friction, and specific wear rates decreased with increase in the percentage of LOME in the biodiesel blend. Scanning Electron microscopy was conducted on the surfaces exposed to wear. The disc and pin using 20% biodiesel blend as lubricating oil showed lesser damage compared to the one subjected to diesel oil as lubricating fluid, confirming additional lubricity of biodiesel.


Author(s):  
Avinash Kumar Agarwal

Biodiesel is an alternative fuel derived from vegetable oils by modifying their molecular structure through transesterification process. Linseed oil methyl ester (LOME) was prepared using methanol in the presence of potassium hydroxide as catalyst. Use of linseed oil methyl ester in compression ignition engines was found to develop a very compatible engine-fuel system with lower emission characteristics. Two identical engines were subjected to long-term endurance tests, fuelled by optimum biodiesel blend (20% LOME) and diesel oil respectively. Various tribological studies on lubricating oil samples drawn at regular intervals for both engines were conducted in order to correlate the comparative performance of the two fuels and the effect of fuel chemistry on lubricating oil performance and life. A number of tests were conducted in order to evaluate comparative performance of the two fuels such as density measurement, viscosity measurements, flash point determination, moisture content determination, pentane and benzene insolubles, thin layer chromatography, differential scanning calorimetry etc. All these tests were used for indirect interpretation of comparative performance of these fuels. Biodiesel fuels performance is found to be superior to that of diesel oil and the lubricating oil life is found to have increased, while operating the engine on this fuel.   NOTE: This paper was presented at the ASME 2003 Internal Combustion Engine Division Spring Technical Conference but was printed in the ASME 2003 Internal Combustion Engine and Rail Transportation Divisions Fall Technical Conference proceedings, pages 427–441. It should appear under the Lubrication and Friction heading.


2003 ◽  
Vol 125 (2) ◽  
pp. 604-611 ◽  
Author(s):  
A. K. Agarwal ◽  
J. Bijwe ◽  
L. M. Das

The combustion related properties of vegetable oils are somewhat similar to diesel oil. Neat vegetable oils or their blends with diesel, however, pose various long-term problems in compression ignition engines, e.g., poor atomization characteristics, ring-sticking, injector coking, injector deposits, injector pump failure, and lube oil dilution by crank-case polymerization. These undesirable features of vegetable oils are because of their inherent properties like high viscosity, low volatility, and polyunsaturated character. Linseed oil methyl ester (LOME) was prepared using methanol for long-term engine operations. The physical and combustion-related properties of the fuels thus developed were found to be closer to that of the diesel oil. A blend of 20 percent was selected as optimum biodiesel blend. Two similar new engines were completely disassembled and subjected to dimensioning of various vital moving parts and then subjected to long-term endurance tests on 20 percent biodiesel blend and diesel oil, respectively. After completion of the test, both the engines were again disassembled for physical inspection and wear measurement of various vital parts. The physical wear of various vital parts, injector coking, carbon deposits on piston, and ring sticking were found to be substantially lower in case of 20 percent biodiesel-fuelled engine. The lubricating oil samples drawn from both engines were subjected to atomic absorption spectroscopy for measurement of various wear metal traces present. AAS tests confirmed substantially lower wear and thus improved life for biodiesel operated engines.


2020 ◽  
Vol 8 (6) ◽  
pp. 2181-2186

As the standard of living is increasing day by day, the demand for energy consumption is also increasing due to the increasing population and expanding urbanization.At the same time,the whole world is aware about the depletion of petroleum reserves and its impact on environment pollution through exhaust emissions which has become a major threat to the whole world, so to deal with this there is an urgent need of suitable alternative fuels for use in diesel engine. Biodiesel is a suitable alternative fuel which is generally produced from renewable biological resources like vegetable oil and animal fats. It is biodegradable , non toxic, has lower emissions profile and at the same time environment friendly. In this study, biodiesel is prepared using mesua ferea linn(MFL)seed oil by transterification process. Two similar engines were operated for long turm endurance test using optimum biodiesel blend and petroleum-diesel oil, respectively. Atomic absorption spectroscopy (AAS) was used to check the wear debris concentration in lubricating oil samples which were drawn from both the engines after a fixed interval of time. Biodiesel operated engine showed lower wear debris concentration as compared to diesel operated engine. Scanning electron microscopy( SEM) showed lower damage of small disk of piston ring when operated with 20% biodiesel fuel, which revealed the better lubricity of biodiesel fuel. Also, carbon deposition of various parts like fuel injector, piston head were found to be lower in biodiesel used engine than that of diesel used engine.


2018 ◽  
Vol 141 (3) ◽  
Author(s):  
Paramvir Singh ◽  
S. R. Chauhan ◽  
Varun Goel ◽  
Ashwani K. Gupta

The results obtained on wear assessment from a compression ignition (CI) engine fueled with a blend of 70% amla seed biodiesel (AB) and 30% eucalyptus oil (EU) on volume basis (called AB70EU30). The results showed stable engine operation and good operability of the engine-fuel system with the binary biodiesel fuel blend. The feasibility of this blend over a long-term endurance tests was explored. The specific assessment examination included the fate of cylinder head, pump plunger, injector nozzle, and piston crown, which affects the engine performance and engine life. The experimental results revealed better tribological performance characteristics with the binary fuel blend as compared to contemporary diesel fuel. No specific problem was encountered during the long-term endurance tests with the binary fuel blend using the modified engine parameters. The results show that the binary fuel mixture offers good potential for use as diesel fuel in CI engines while maintaining good performance and endurance.


Journal bearing friction experiments have been made generally at relatively low temperatures and otherwise in conditions tending to prevent oxidation of the lubricating oil. Thus Beauchamp Tower’s experiments led Reynolds to the conclusion that fluid friction alone prevails in an oil film maintained by continuous rotation of the journal and that boundary conditions do not become sensible. The more recent experiments by Stanton, undertaken after the Physical Society discussion of 1919, were made to verify the conclusion, and confirmed that especially for mineral oils, “the conditions were in all cases those of perfect lubrication ( i. e ., complete fluid lubrication), no approximation to the hypothetical ones of boundary lubrication being observed,” “the conditions of lubrication of a cylindrical journal being of the Reynolds’ type right up to the seizing pressure. Stanton’s experimental conditions were such that oxidation effects were not obtained. The feed to the journal bearing was always by fresh, not circulated, oil and the temperature of the oil film was maintained at 51·6° C., i. e ., at least 50° lower than required to induce oxidation in a mineral oil particularly susceptible to the effect. The possibility that oxidation might lead to boundary conditions becoming a factor in the measurements was not considered. Oxidation of the oil used to lubricate internalcombustion engines cannot be avoided in the usual conditions of operation, and an investigation of the effect on lubricating value was begun, in connection with experiments made in association with Professor Callendar, on the oxidation of the lighter oils used as engine fuel. The results of lubrication experiments made directly on engines were difficult to interpret. The friction measured is mainly that due to the reciprocating motion of the pistons in the cylinders and oxidation being uncontrolled, the resulting accumulation of semisolid products leads to secondary friction effects greater in magnitude than the primary effect attributable to the fluid alone. The conditions of journal bearing lubrication, on the other hand, can be controlled and friction measured with fair accuracy and it appeared therefore that the investigation could be continued most effectively by using journal bearing testing machines. Machines adapted to be run at the relatively high temperature required for the oxidation of mineral oils had been designed at the N. P. L. by Mr. C. Jakeman in association with whom the experiments were continued, by permission of the authorities concerned.


2018 ◽  
Vol 17 (2) ◽  
pp. 33
Author(s):  
L. F. Micheli ◽  
D. L. Módolo ◽  
L. E. R. Pereira

The transesterification of vegetable oils results in methyl esters of fatty acid, known as biodiesel. This one presents similar features of diesel oil, such as cetane number, specific weight, heat of combustion and air-fuel ratio. However, arising problems from its higher viscosity leads to a poor spraying by the fuel injectors and so to a low-grade combustion, causing formation of undesirable deposits inside the engine, changes in the properties of the lubricating oil and in the composition of the exhaust gas. Owing to this issue, it is necessary to study an additive able to make biodiesel characteristics more appropriate to be used in compression ignition engines, as well as a monitoring of changes in exhaust gas composition. The chosen additive was d-limonene, a monocyclic terpene obtained as a byproduct of citriculture. This paper presents the preliminary results obtained from the tests in a stationary diesel engine fuelled with mixtures of diesel-biodiesel and d-limonene, in different concentrations, comparing to regular diesel fuel. Although it was used in low concentrations, the additive was efficient in the reduction of hydrocarbons, carbon monoxide and opacity.


Molecules ◽  
2020 ◽  
Vol 25 (5) ◽  
pp. 1158 ◽  
Author(s):  
Pablo Ortiz ◽  
Richard Vendamme ◽  
Walter Eevers

The use of renewable resources for plastic production is an imperious need for the reduction of the carbon footprint and the transition towards a circular economy. With that goal in mind, fully biobased epoxy resins have been designed and prepared by combining epoxidized linseed oil, lignin, and a biobased diamine derived from fatty acid dimers. The aromatic structures in lignin provide hardness and strength to an otherwise flexible and breakable epoxy resin. The curing of the system was investigated by infrared spectroscopy and differential scanning calorimetry (DSC). The influence of the different components on the thermo-mechanical properties of the epoxy resins was analyzed by DSC, thermal gravimetric analysis (TGA), and tensile tests. As the content of lignin in the resin increases, so does the glass transition, the Young’s modulus, and the onset of thermal degradation. This correlation is non-linear, and the higher the percentage of lignin, the more pronounced the effect. All the components of the epoxy resin being commodity chemicals, the present system provides a realistic opportunity for the preparation of fully biorenewable resins at an industrial scale.


Sign in / Sign up

Export Citation Format

Share Document