Driver cognitive distraction detection: Feature estimation and implementation

Author(s):  
M H Kutila ◽  
M Jokela ◽  
T Mäkinen ◽  
J Viitanen ◽  
G Markkula ◽  
...  

This article focuses on monitoring a driver's cognitive impairment due to talking to passengers or on a mobile phone, daydreaming, or just thinking about other than driving-related matters. This paper describes an investigation of cognitive distraction, firstly, giving an overall idea of its effects on the driver and, secondly, discussing the practical implementation of an algorithm for detection of cognitive distraction using a support vector machine (SVM) classifier. The evaluation data have been gathered by recruiting 12 professional drivers to drive for approximately 45 min in various environments and inducing cognitive tasks, i.e. arithmetic calculations. According to the prior knowledge and the experimental analysis, gaze, head and lane-keeping variances over a 15 s time window were selected indicative features. The SVM classifier's performance was optimized through exhaustive parameter tuning. The executed tests show that the cognitive workload can be detected with approximately 65-80 per cent confidence despite the fact that the test material represented medium-difficulty cognitive tasks (i.e. the induced workload was not very high). Thus, it could be assumed that a more challenging cognitive task would yield better detection results.

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Loris Nanni ◽  
Sheryl Brahnam ◽  
Stefano Ghidoni ◽  
Alessandra Lumini

We perform an extensive study of the performance of different classification approaches on twenty-five datasets (fourteen image datasets and eleven UCI data mining datasets). The aim is to find General-Purpose (GP) heterogeneous ensembles (requiring little to no parameter tuning) that perform competitively across multiple datasets. The state-of-the-art classifiers examined in this study include the support vector machine, Gaussian process classifiers, random subspace of adaboost, random subspace of rotation boosting, and deep learning classifiers. We demonstrate that a heterogeneous ensemble based on the simple fusion by sum rule of different classifiers performs consistently well across all twenty-five datasets. The most important result of our investigation is demonstrating that some very recent approaches, including the heterogeneous ensemble we propose in this paper, are capable of outperforming an SVM classifier (implemented with LibSVM), even when both kernel selection and SVM parameters are carefully tuned for each dataset.


2021 ◽  
Author(s):  
Andrea Apicella ◽  
Pasquale Arpaia ◽  
Mirco Frosolone ◽  
Giovanni Improta ◽  
Nicola Moccaldi ◽  
...  

Abstract A wearable system for the personalized EEG-based detection of engagement in learning 4.0 is proposed. The system can be used to make an automated teaching platform adaptable to the cognitive and emotional conditions of the user. For example, the teaching strategy could be personalized by an automatic modulation of the proposed contents. The system is validated by an experimental case study on twenty-one students. The experimental task consisted in learning how a specific human-machine interface works. Both the cognitive and motor skills of participants were involved. De facto standard stimuli based on cognitive task and music background were employed to guarantee a metrologically founded reference. The proposed signal processing pipeline (Filter bank, Common Spatial Pattern, and Support Vector Machine), in within-subject approach, reaches almost 77 % average accuracy by a 3 s time window, in detecting both cognitive and emotional engagement.


2020 ◽  
Vol 10 (12) ◽  
pp. 4213
Author(s):  
Anna Borowska-Terka ◽  
Pawel Strumillo

Numerous applications of human–machine interfaces, e.g., dedicated to persons with disabilities, require contactless handling of devices or systems. The purpose of this research is to develop a hands-free head-gesture-controlled interface that can support persons with disabilities to communicate with other people and devices, e.g., the paralyzed to signal messages or the visually impaired to handle travel aids. The hardware of the interface consists of a small stereovision rig with a built-in inertial measurement unit (IMU). The device is to be positioned on a user’s forehead. Two approaches to recognize head movements were considered. In the first approach, for various time window sizes of the signals recorded from a three-axis accelerometer and a three-axis gyroscope, statistical parameters were calculated such as: average, minimum and maximum amplitude, standard deviation, kurtosis, correlation coefficient, and signal energy. For the second approach, the focus was put onto direct analysis of signal samples recorded from the IMU. In both approaches, the accuracies of 16 different data classifiers for distinguishing the head movements: pitch, roll, yaw, and immobility were evaluated. The recordings of head gestures were collected from 65 individuals. The best results for the testing data were obtained for the non-parametric approach, i.e., direct classification of unprocessed samples of IMU signals for Support Vector Machine (SVM) classifier (95% correct recognitions). Slightly worse results, in this approach, were obtained for the random forests classifier (93%). The achieved high recognition rates of the head gestures suggest that a person with physical or sensory disability can efficiently communicate with other people or manage applications using simple head gesture sequences.


2021 ◽  
Vol 10 (5) ◽  
pp. 2539-2547
Author(s):  
Valentina Markova ◽  
Todor Ganchev ◽  
Kalin Kalinkov ◽  
Miroslav Markov

We report on the development of an automated detector of acute stress based on physiological signals. Our detector discriminates between high and low levels of acute stress accumulated by students when performing cognitive tasks on a computer. The proposed detector builds on well-known physiological signal processing principles combined with the state-of-art support vector machine (SVM) classifier. The novelty aspects here come from the design and implementation of the signal pre-processing and the feature extraction stages, which were purposely designed and fine-tuned for the specific needs of acute stress detection and from applying existing algorithms to a new problem. The proposed acute stress detector was evaluated in person-specific and person-independent experimental setups using the publicly available CLAS dataset. Each setup involved three cognitive tasks with a dissimilar crux of the matter and different complexity. The experimental results indicated a very high detection accuracy when discriminating between acute stress conditions due to significant cognitive load and conditions elicited by two typical emotion elicitation tasks. Such a functionality would also contribute towards obtaining a multi-faceted analysis on the dependence of work efficiency from personal treats, cognitive load and acute stress level.


2020 ◽  
Author(s):  
Nalika Ulapane ◽  
Karthick Thiyagarajan ◽  
sarath kodagoda

<div>Classification has become a vital task in modern machine learning and Artificial Intelligence applications, including smart sensing. Numerous machine learning techniques are available to perform classification. Similarly, numerous practices, such as feature selection (i.e., selection of a subset of descriptor variables that optimally describe the output), are available to improve classifier performance. In this paper, we consider the case of a given supervised learning classification task that has to be performed making use of continuous-valued features. It is assumed that an optimal subset of features has already been selected. Therefore, no further feature reduction, or feature addition, is to be carried out. Then, we attempt to improve the classification performance by passing the given feature set through a transformation that produces a new feature set which we have named the “Binary Spectrum”. Via a case study example done on some Pulsed Eddy Current sensor data captured from an infrastructure monitoring task, we demonstrate how the classification accuracy of a Support Vector Machine (SVM) classifier increases through the use of this Binary Spectrum feature, indicating the feature transformation’s potential for broader usage.</div><div><br></div>


2020 ◽  
Vol 20 ◽  
Author(s):  
Hongwei Zhang ◽  
Steven Wang ◽  
Tao Huang

Aims: We would like to identify the biomarkers for chronic hypersensitivity pneumonitis (CHP) and facilitate the precise gene therapy of CHP. Background: Chronic hypersensitivity pneumonitis (CHP) is an interstitial lung disease caused by hypersensitive reactions to inhaled antigens. Clinically, the tasks of differentiating between CHP and other interstitial lungs diseases, especially idiopathic pulmonary fibrosis (IPF), were challenging. Objective: In this study, we analyzed the public available gene expression profile of 82 CHP patients, 103 IPF patients, and 103 control samples to identify the CHP biomarkers. Method: The CHP biomarkers were selected with advanced feature selection methods: Monte Carlo Feature Selection (MCFS) and Incremental Feature Selection (IFS). A Support Vector Machine (SVM) classifier was built. Then, we analyzed these CHP biomarkers through functional enrichment analysis and differential co-expression analysis. Result: There were 674 identified CHP biomarkers. The co-expression network of these biomarkers in CHP included more negative regulations and the network structure of CHP was quite different from the network of IPF and control. Conclusion: The SVM classifier may serve as an important clinical tool to address the challenging task of differentiating between CHP and IPF. Many of the biomarker genes on the differential co-expression network showed great promise in revealing the underlying mechanisms of CHP.


Author(s):  
Narina Thakur ◽  
Deepti Mehrotra ◽  
Abhay Bansal ◽  
Manju Bala

Objective: Since the adequacy of Learning Objects (LO) is a dynamic concept and changes in its use, needs and evolution, it is important to consider the importance of LO in terms of time to assess its relevance as the main objective of the proposed research. Another goal is to increase the classification accuracy and precision. Methods: With existing IR and ranking algorithms, MAP optimization either does not lead to a comprehensively optimal solution or is expensive and time - consuming. Nevertheless, Support Vector Machine learning competently leads to a globally optimal solution. SVM is a powerful classifier method with its high classification accuracy and the Tilted time window based model is computationally efficient. Results: This paper proposes and implements the LO ranking and retrieval algorithm based on the Tilted Time window and the Support Vector Machine, which uses the merit of both methods. The proposed model is implemented for the NCBI dataset and MAT Lab. Conclusion: The experiments have been carried out on the NCBI dataset, and LO weights are assigned to be relevant and non - relevant for a given user query according to the Tilted Time series and the Cosine similarity score. Results showed that the model proposed has much better accuracy.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 739
Author(s):  
Alessandro Bevilacqua ◽  
Margherita Mottola ◽  
Fabio Ferroni ◽  
Alice Rossi ◽  
Giampaolo Gavelli ◽  
...  

Predicting clinically significant prostate cancer (csPCa) is crucial in PCa management. 3T-magnetic resonance (MR) systems may have a novel role in quantitative imaging and early csPCa prediction, accordingly. In this study, we develop a radiomic model for predicting csPCa based solely on native b2000 diffusion weighted imaging (DWIb2000) and debate the effectiveness of apparent diffusion coefficient (ADC) in the same task. In total, 105 patients were retrospectively enrolled between January–November 2020, with confirmed csPCa or ncsPCa based on biopsy. DWIb2000 and ADC images acquired with a 3T-MRI were analyzed by computing 84 local first-order radiomic features (RFs). Two predictive models were built based on DWIb2000 and ADC, separately. Relevant RFs were selected through LASSO, a support vector machine (SVM) classifier was trained using repeated 3-fold cross validation (CV) and validated on a holdout set. The SVM models rely on a single couple of uncorrelated RFs (ρ < 0.15) selected through Wilcoxon rank-sum test (p ≤ 0.05) with Holm–Bonferroni correction. On the holdout set, while the ADC model yielded AUC = 0.76 (95% CI, 0.63–0.96), the DWIb2000 model reached AUC = 0.84 (95% CI, 0.63–0.90), with specificity = 75%, sensitivity = 90%, and informedness = 0.65. This study establishes the primary role of 3T-DWIb2000 in PCa quantitative analyses, whilst ADC can remain the leading sequence for detection.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1496
Author(s):  
Hao Liang ◽  
Yiman Zhu ◽  
Dongyang Zhang ◽  
Le Chang ◽  
Yuming Lu ◽  
...  

In analog circuit, the component parameters have tolerances and the fault component parameters present a wide distribution, which brings obstacle to classification diagnosis. To tackle this problem, this article proposes a soft fault diagnosis method combining the improved barnacles mating optimizer(BMO) algorithm with the support vector machine (SVM) classifier, which can achieve the minimum redundancy and maximum relevance for feature dimension reduction with fuzzy mutual information. To be concrete, first, the improved barnacles mating optimizer algorithm is used to optimize the parameters for learning and classification. We adopt six test functions that are on three data sets from the University of California, Irvine (UCI) machine learning repository to test the performance of SVM classifier with five different optimization algorithms. The results show that the SVM classifier combined with the improved barnacles mating optimizer algorithm is characterized with high accuracy in classification. Second, fuzzy mutual information, enhanced minimum redundancy, and maximum relevance principle are applied to reduce the dimension of the feature vector. Finally, a circuit experiment is carried out to verify that the proposed method can achieve fault classification effectively when the fault parameters are both fixed and distributed. The accuracy of the proposed fault diagnosis method is 92.9% when the fault parameters are distributed, which is 1.8% higher than other classifiers on average. When the fault parameters are fixed, the accuracy rate is 99.07%, which is 0.7% higher than other classifiers on average.


Sign in / Sign up

Export Citation Format

Share Document