Flow Deflection by Gauze Screens

1969 ◽  
Vol 11 (3) ◽  
pp. 290-294 ◽  
Author(s):  
A. J. Reynolds

A mathematical model is set up to predict the deflection of a flow passing obliquely through a plane gauze. It differs from existing descriptions in accounting consistently for velocity variations in the deflecting flow, and in relating the deflection at the gauze to the total deflection in a more realistic way. The deflection at the gauze is specified in two ways, as being half the total, and as equalling the total. These two relations are found to represent the performance of gauzes whose solidities are, respectively, less than and greater than one-half. Formulae are developed which predict the flow deflection with good accuracy for these two régimes.

2014 ◽  
Vol 945-949 ◽  
pp. 777-780
Author(s):  
Tao Liu ◽  
Yong Xu ◽  
Bo Yuan Mao

Firstly, according to the structure characteristics of precision centrifuge, the mathematical model of its dynamic balancing system was set up, and the dynamic balancing scheme of double test surfaces, double emendation surfaces were established. Then the dynamic balance system controller of precision centrifuge was designed. Simulation results show that the controller designed can completely meet the requirements of precision centrifuge dynamic balance control system.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. B. Almeida ◽  
T. N. Vilches ◽  
C. P. Ferreira ◽  
C. M. C. B. Fortaleza

AbstractIn 2020, the world experienced its very first pandemic of the globalized era. A novel coronavirus, SARS-CoV-2, is the causative agent of severe pneumonia and has rapidly spread through many nations, crashing health systems and leading a large number of people to death. In Brazil, the emergence of local epidemics in major metropolitan areas has always been a concern. In a vast and heterogeneous country, with regional disparities and climate diversity, several factors can modulate the dynamics of COVID-19. What should be the scenario for inner Brazil, and what can we do to control infection transmission in each of these locations? Here, a mathematical model is proposed to simulate disease transmission among individuals in several scenarios, differing by abiotic factors, social-economic factors, and effectiveness of mitigation strategies. The disease control relies on keeping all individuals’ social distancing and detecting, followed by isolating, infected ones. The model reinforces social distancing as the most efficient method to control disease transmission. Moreover, it also shows that improving the detection and isolation of infected individuals can loosen this mitigation strategy. Finally, the effectiveness of control may be different across the country, and understanding it can help set up public health strategies.


2017 ◽  
Vol 40 (5) ◽  
pp. 1043-1047 ◽  
Author(s):  
J Reséndiz-Muñoz ◽  
M A Corona-Rivera ◽  
J L Fernández-Muñoz ◽  
M Zapata-Torres ◽  
A Márquez-Herrera ◽  
...  
Keyword(s):  

2019 ◽  
Author(s):  
Xiaochu Li ◽  
Floricel Gonzalez ◽  
Nathaniel Esteves ◽  
Birgit E. Scharf ◽  
Jing Chen

AbstractCoexistence of bacteriophages, or phages, and their host bacteria plays an important role in maintaining the microbial communities. In natural environments with limited nutrients, motile bacteria can actively migrate towards locations of richer resources. Although phages are not motile themselves, they can infect motile bacterial hosts and spread in space via the hosts. Therefore, in a migrating microbial community coexistence of bacteria and phages implies their co-propagation in space. Here, we combine an experimental approach and mathematical modeling to explore how phages and their motile host bacteria coexist and co-propagate. When lytic phages encountered motile host bacteria in our experimental set up, a sector-shaped lysis zone formed. Our mathematical model indicates that local nutrient depletion and the resulting inhibition of proliferation and motility of bacteria and phages are the key to formation of the observed lysis pattern. The model further reveals the straight radial boundaries in the lysis pattern as a tell-tale sign for coexistence and co-propagation of bacteria and phages. Emergence of such a pattern, albeit insensitive to extrinsic factors, requires a balance between intrinsic biological properties of phages and bacteria, which likely results from co-evolution of phages and bacteria.Author summaryCoexistence of phages and their bacterial hosts is important for maintaining the microbial communities. In a migrating microbial community, coexistence between phages and host bacteria implies that they co-propagate in space. Here we report a novel phage lysis pattern that is indicative of this co-propagation. The corresponding mathematical model we developed highlights a crucial dependence of the lysis pattern and implied phage-bacteria co-propagation on intrinsic properties allowing proliferation and spreading of the microbes in space. Remarkably, extrinsic factors, such as overall nutrient level, do not influence phage-bacteria coexistence and co-propagation. Findings from this work have strong implications for dispersal of phages mediated by motile bacterial communities, which will provide scientific basis for the fast-growing applications of phages.


2020 ◽  
Vol 10 (15) ◽  
pp. 5220 ◽  
Author(s):  
Jianjun Wang ◽  
Jingyi Zhao ◽  
Wenlei Li ◽  
Xing Jia ◽  
Peng Wei

In order to ensure the ride comfort of a hydraulic transport vehicle in transportation, it is important to account for the effects of the suspension system. In this paper, an improved hydraulic suspension system based on a reasonable setting of the accumulator was proposed for a heavy hydraulic transport vehicle. The hydraulic transport vehicle was a multi-degree nonlinear system, and the establishment of an appropriate vehicle dynamical model was the basis for the improvement of the hydraulic suspension system. The hydraulic suspension system was analyzed, and a mathematical model of the hydraulic suspension system with accumulator established and then analyzed. The results revealed that installing the appropriate accumulator can absorb the impact pressure on the vehicle, while a hydraulic suspension system with an accumulator can be designed. Further, it was proved that a reasonable setting for the accumulator can reduce the impact force on the transport vehicle through simulation, and the optimal accumulator parameters can be obtained. Finally, an experiment in the field was set up and carried out, and the experimental results presented to prove the viability of the proposed method.


1988 ◽  
Vol 11 (4) ◽  
pp. 235-242 ◽  
Author(s):  
C. Lamberti ◽  
E. Sarti ◽  
A. Santoro ◽  
M. Spongano ◽  
P. Zucchelli ◽  
...  

A mathematical model of hydroelectrolyte exchanges and arterial pressure regulation in the human body during dialysis has been set up. It is conceived as a tool for a new dialysis unit which will be able to “interpret” the signals supplied by suitable instruments connected to the patient and modify the machine set-points in real time in order to obtain clinical results defined by the physician. The main aim is the prevention of hypotensive episodes during treatment. An experimental protocol has been developed for parameter estimation of each patient during a single dialysis. Clinical tests illustrated the model's ability to fit the patient's state during dialysis. This is the first step in the more general task of validation of the model, necessary for the achievement of a closed-loop dialysis unit.


2020 ◽  
Vol 12 (11) ◽  
pp. 168781402097552
Author(s):  
Amr MS Mahdy ◽  
Yasser Abd Elaziz Amer ◽  
Mohamed S Mohamed ◽  
Eslam Sobhy

A Caputo–Fabrizio (CF) form a fractional-system mathematical model for the fractional financial models of awareness is suggested. The fundamental attributes of the model are explored. The existence and uniqueness of the suggest fractional financial models of awareness solutions are given through the fixed point hypothesis. The non-number request subordinate gives progressively adaptable and more profound data about the multifaceted nature of the elements of the proposed partial budgetary models of mindfulness model than the whole number request models set up previously. In order to confirm the theoretical results and numerical simulations studies with Caputo derivative are offered.


2011 ◽  
Vol 255-260 ◽  
pp. 3692-3696
Author(s):  
Xiao Lei Zhang ◽  
Dong Po Sun ◽  
Feng Ran Zhang

The 2-D water and sediment mathematical model which reflects silting in floodplain and scouting in main channel of over-bank flooding in the Lower Yellow River has been set up in this paper. Through carrying on 2-D water and sediment numerical simulation of the “96.8” typical flood, the author studied influence of over-bank flooding on flood travel and transverse exchange. The primary simulation results show that, adopting the over-bank flooding for silting in floodplain and scouting in main channel effectively guaranteed and expanded transverse exchange between floodplain and main channel and maintained the river channel vigor. This can relieve “secondary suspended river” states in the Low Yellow River to a certain extent; at the same time, the different magnitudes of over-bank floods have different effect of silting in floodplain and scouting in main channel.


2020 ◽  
pp. 733-748
Author(s):  
Ahmed Abdelgawad ◽  
Md Anam Mahmud ◽  
Kumar Yelamarthi

Most of the existing Structural Health Monitoring (SHM) systems are vulnerable to environmental and operational damages. The majority of these systems cannot detect the size and location of the damage. Guided wave techniques are widely used to detect damage in structures due to its sensitivity to different changes in the structure. Finding a mathematical model for such system will help to implement a reliable and efficient low-cost SHM system. In this paper, a mathematical model is proposed to detect the size and location of damages in physical structures using the piezoelectric sensor. The proposed model combines both pitch-catch and pulse-echo techniques and has been verified throughout simulations using ABAQUS/ Explicit finite element software. For empirical verification, data was collected from an experimental set-up using an Aluminum sheets. Since the experimental data contains a lot of noises, a Butterworth filter was used to clean up the signal. The proposed mathematical model along with the Butterworth filter have been validated throughout real test bed.


2018 ◽  
Vol 38 (3) ◽  
pp. 321-327
Author(s):  
Jingfu Jia ◽  
Manjin Hao ◽  
Jianhua Zhao

Forced or natural ventilation is the most common measure of frost heave protection for refrigerated warehouse floor. To optimize air velocity for the underfloor forced ventilation system of refrigerated warehouse, a steady state three-dimensional mathematical model of heat transfer is set up in this paper. The temperature fields of this system are simulated and calculated by CFD software PHOENICS under different air velocity, 1.5m/s, 2.5m/s or 3.5m/s. The results show that the optimized air velocity is 1.5m/s when the tube spacing is 1.5m.


Sign in / Sign up

Export Citation Format

Share Document