Structure of Turbulence Close to the Interface in the Liquid Phase of a Co-Current Stratified Two-Phase Flow

Author(s):  
R. B. Jeffries ◽  
D. S. Scott ◽  
E. Rhodes

Turbulence data are presented which were measured by hot-film anemometry in the liquid phase of a two-phase co-current stratified flow of air and water in a rectangular channel. Mean velocity profiles, u', v', and u' v' intensity distributions were measured across the liquid phase, with special attention being given to the vicinity of the interface. Distributions of total shear stress, eddy viscosity and turbulent energy have been calculated.

1970 ◽  
Vol 41 (2) ◽  
pp. 327-361 ◽  
Author(s):  
I. Wygnanski ◽  
H. E. Fiedler

The two-dimensional incompressible mixing layer was investigated by using constant-temperature, linearized hot wire anemometers. The measurements were divided into three categories: (1) the conventional average measurements; (2) time-average measurements in the turbulent and the non-turbulent zones; (3) ensemble average measurements conditioned to a specific location of the interface. The turbulent energy balance was constructed twice, once using the conventional results and again using the turbulent zone results. Some differences emerged between the two sets of results. It appears that the mixing region can be divided into two regions, one on the high velocity side which resembles the outer part of a wake and the other on the low velocity side which resembles a jet. The binding turbulent–non-turbulent interfaces seem to move independently of each other. There is a strong connexion between the instantaneous location of the interface and the axial velocity profile. Indeed the well known exponential mean velocity profile never actually exists at any given instant. In spite of the complexity of the flow the simple concepts of eddy viscosity and eddy diffusivity appear to be valid within the turbulent zone.


Author(s):  
N. A. Bulychev

In this paper, the plasma discharge in a high-pressure fluid stream in order to produce gaseous hydrogen was studied. Methods and equipment have been developed for the excitation of a plasma discharge in a stream of liquid medium. The fluid flow under excessive pressure is directed to a hydrodynamic emitter located at the reactor inlet where a supersonic two-phase vapor-liquid flow under reduced pressure is formed in the liquid due to the pressure drop and decrease in the flow enthalpy. Electrodes are located in the reactor where an electric field is created using an external power source (the strength of the field exceeds the breakdown threshold of this two-phase medium) leading to theinitiation of a low-temperature glow quasi-stationary plasma discharge.A theoretical estimation of the parameters of this type of discharge has been carried out. It is shown that the lowtemperature plasma initiated under the flow conditions of a liquid-phase medium in the discharge gap between the electrodes can effectively decompose the hydrogen-containing molecules of organic compounds in a liquid with the formation of gaseous products where the content of hydrogen is more than 90%. In the process simulation, theoretical calculations of the voltage and discharge current were also made which are in good agreement with the experimental data. The reaction unit used in the experiments was of a volume of 50 ml and reaction capacity appeared to be about 1.5 liters of hydrogen per minute when using a mixture of oxygen-containing organic compounds as a raw material. During their decomposition in plasma, solid-phase products are also formed in insignificant amounts: carbon nanoparticles and oxide nanoparticles of discharge electrode materials.


1979 ◽  
Vol 44 (3) ◽  
pp. 700-710 ◽  
Author(s):  
Ivan Fořt ◽  
Hans-Otto Möckel ◽  
Jan Drbohlav ◽  
Miroslav Hrach

Profiles of the mean velocity have been analyzed in the stream streaking from the region of rotating standard six-blade disc turbine impeller. The profiles were obtained experimentally using a hot film thermoanemometer probe. The results of the analysis is the determination of the effect of relative size of the impeller and vessel and the kinematic viscosity of the charge on three parameters of the axial profile of the mean velocity in the examined stream. No significant change of the parameter of width of the examined stream and the momentum flux in the stream has been found in the range of parameters d/D ##m <0.25; 0.50> and the Reynolds number for mixing ReM ##m <2.90 . 101; 1 . 105>. However, a significant influence has been found of ReM (at negligible effect of d/D) on the size of the hypothetical source of motion - the radius of the tangential cylindrical jet - a. The proposed phenomenological model of the turbulent stream in region of turbine impeller has been found adequate for values of ReM exceeding 1.0 . 103.


1986 ◽  
Vol 51 (5) ◽  
pp. 1001-1015 ◽  
Author(s):  
Ivan Fořt ◽  
Vladimír Rogalewicz ◽  
Miroslav Richter

The study describes simulation of the motion of bubbles in gas, dispersed by a mechanical impeller in a turbulent low-viscosity liquid flow. The model employs the Monte Carlo method and it is based both on the knowledge of the mean velocity field of mixed liquid (mean motion) and of the spatial distribution of turbulence intensity ( fluctuating motion) in the investigated system - a cylindrical tank with radial baffles at the wall and with a standard (Rushton) turbine impeller in the vessel axis. Motion of the liquid is then superimposed with that of the bubbles in a still environment (ascending motion). The computation of the simulation includes determination of the spatial distribution of the gas holds-up (volumetric concentrations) in the agitated charge as well as of the total gas hold-up system depending on the impeller size and its frequency of revolutions, on the volumetric gas flow rate and the physical properties of gas and liquid. As model parameters, both liquid velocity field and normal gas bubbles distribution characteristics are considered, assuming that the bubbles in the system do not coalesce.


1991 ◽  
Vol 56 (6) ◽  
pp. 1249-1252
Author(s):  
Marie Fialová ◽  
Ctirad Verner ◽  
Lothar Ebner

The characteristics of axial dispersion in the liquid phase were measured for two basic flow regimes in a horizontal two-phase tube reactor. The data obtained indicate that in some flow regions, axial dispersion can be quite significant.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 413
Author(s):  
Sandra Lopez-Zamora ◽  
Jeonghoon Kong ◽  
Salvador Escobedo ◽  
Hugo de Lasa

The prediction of phase equilibria for hydrocarbon/water blends in separators, is a subject of considerable importance for chemical processes. Despite its relevance, there are still pending questions. Among them, is the prediction of the correct number of phases. While a stability analysis using the Gibbs Free Energy of mixing and the NRTL model, provide a good understanding with calculation issues, when using HYSYS V9 and Aspen Plus V9 software, this shows that significant phase equilibrium uncertainties still exist. To clarify these matters, n-octane and water blends, are good surrogates of naphtha/water mixtures. Runs were developed in a CREC vapor–liquid (VL_ Cell operated with octane–water mixtures under dynamic conditions and used to establish the two-phase (liquid–vapor) and three phase (liquid–liquid–vapor) domains. Results obtained demonstrate that the two phase region (full solubility in the liquid phase) of n-octane in water at 100 °C is in the 10-4 mol fraction range, and it is larger than the 10-5 mol fraction predicted by Aspen Plus and the 10-7 mol fraction reported in the technical literature. Furthermore, and to provide an effective and accurate method for predicting the number of phases, a machine learning (ML) technique was implemented and successfully demonstrated, in the present study.


2012 ◽  
Vol 625 ◽  
pp. 117-120
Author(s):  
Hui Xu ◽  
Xiao Hong Chen

The liquid phase experiment is finished ,and the relation curve of input- pressure and input-flow、output-flow、distributary rate are worked out.We are bout to calculate the production capacity and define the best distribution rate of the operation parameters.At the same time , the solid-liquid phase separating experiment are made too and we conclude the relation curve of input-pressure and consistency 、separating efficiency .Comparing with the numerical simulation ,the result is reasonable.


1975 ◽  
Vol 42 (3) ◽  
pp. 591-597 ◽  
Author(s):  
D. H. Wood ◽  
R. A. Antonia

Mean velocity and turbulence intensity measurements have been made in a fully developed turbulent boundary layer over a d-type surface roughness. This roughness is characterised by regular two-dimensional elements of square cross section placed one element width apart, with the cavity flow between elements being essentially isolated from the outer flow. The measurements show that this boundary layer closely satisfies the requirement of exact self-preservation. Distribution across the layer of Reynolds normal and shear stresses are closely similar to those found over a smooth surface except for the region immediately above the grooves. This similarity extends to distributions of third and fourth-order moments of longitudinal and normal velocity fluctuations and also to the distribution of turbulent energy dissipation. The present results are compared with those obtained for a k-type or sand grained roughness.


Author(s):  
F Bakhtar ◽  
H Mashmoushy ◽  
O C Jadayel

During the course of expansion of steam in turbines the fluid first supercools and then nucleates to become a two-phase mixture. The liquid phase consists of a large number of extremely small droplets which are difficult to generate except by nucleation. To reproduce turbine two-phase flow conditions requires a supply of supercooled vapour which can be achieved under blow-down conditions by the equipment employed. This paper is the third of a set describing an investigation into the performance of a cascade of rotor tip section profiles in wet steam and presents the results of the wake traverses.


Sign in / Sign up

Export Citation Format

Share Document