scholarly journals Potential Risks of Phthalate Esters: Acquisition of Endocrine-disrupting Activity during Environmental and Metabolic Processing

2011 ◽  
Vol 57 (6) ◽  
pp. 497-503 ◽  
Author(s):  
Yoshinori Okamoto ◽  
Koji Ueda ◽  
Nakao Kojima
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Diksha Sirohi ◽  
Ruqaiya Al Ramadhani ◽  
Luke D. Knibbs

AbstractPurposeEndocrine-related diseases and disorders are on the rise globally. Synthetically produced environmental chemicals (endocrine-disrupting chemicals (EDCs)) mimic hormones like oestrogen and alter signalling pathways. Endometriosis is an oestrogen-dependent condition, affecting 10–15% of women of the reproductive age, and has substantial impacts on the quality of life. The aetiology of endometriosis is believed to be multifactorial, ranging from genetic causes to immunologic dysfunction due to environmental exposure to EDCs. Hence, we undertook a systematic review and investigated the epidemiological evidence for an association between EDCs and the development of endometriosis. We also aimed to assess studies on the relationship between body concentration of EDCs and the severity of endometriosis.MethodFollowing PRISMA guidelines, a structured search of PubMed, Embase and Scopus was conducted (to July 2018). The included studies analysed the association between one or more EDCs and the prevalence of endometriosis. The types of EDCs, association and outcome, participant characteristics and confounding variables were extracted and analysed. Quality assessment was performed using standard criteria.ResultsIn total, 29 studies were included. Phthalate esters were positively associated with the prevalence of endometriosis. The majority (71%) of studies revealed a significant association between bisphenol A, organochlorinated environmental pollutants (dioxins, dioxin-like compounds, organochlorinated pesticides, polychlorinated biphenyls) and the prevalence of endometriosis. A positive association between copper, chromium and prevalence of endometriosis was demonstrated in one study only. Cadmium, lead and mercury were not associated with the prevalence of endometriosis. There were conflicting results for the association between nickel and endometriosis. The relationship of EDCs and severity of endometriosis was not established in the studies.ConclusionWe found some evidence to suggest an association between phthalate esters, bisphenol A, organochlorinated environmental pollutants and the prevalence of endometriosis. Disentangling these exposures from various other factors that affect endometriosis is complex, but an important topic for further research.


Author(s):  
Xiangqin Xu ◽  
Gang Zhou ◽  
Kun Lei ◽  
Gerald A. LeBlanc ◽  
Lihui An

A great deal of attention has been paid lately to release of phthalate esters (PAEs) from polyethylene terephthalate (PET) bottles into PET bottled drinking water due to their potential endocrine-disrupting effects. Three kinds of PAEs, including diethyl phthalate (DEP), dimethyl phthalate (DMP) and dibutyl phthalate (DBP), were detected in 10 popular brands of PET bottles in Beijing, ranging from 101.97 μg/kg to 709.87 μg/kg. Meanwhile, six kinds of PAEs, including DEP, DMP, DBP, n-butyl benzyl phthalate (BBP), di-n-octyl phthalate (DOP) and di(2-ethylhexyl) phthalate (DEHP), were detected in PET bottled water, ranging from 0.19 μg/L to 0.98 μg/L, under an outdoor storage condition, while their concentrations ranged from 0.18 μg/L to 0.71 μg/L under an indoor storage condition. Furthermore, the concentrations of PAEs in brand D and E bottles were slightly increased when the storage time was prolonged. In addition, the concentrations of PAEs in commercial water contained in brand B and H bottles and pure water contained in brand E and G bottles were also slightly increased with the increase of storage temperature. Interestingly, DBP mainly contributed to the increased PAEs levels in simulation water. These results suggest that a part of the PAEs in PET bottled water originated from plastic bottles, which was related to the storage time and temperature. However, the PAEs in PET bottled water only pose a negligible risk to consumers if they follow the recommendations, such as storage at a common place (24 °C), away from sun and in a short period of time.


2015 ◽  
Vol 46 (2) ◽  
pp. 146-159 ◽  
Author(s):  
Munawar Saeed Qureshi ◽  
Abdull Rahim bin Mohd Yusoff ◽  
Mohd Dzul Hakim Wirzal ◽  
Jiri Barek ◽  
Hassan Imran Afridi ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
pp. 347
Author(s):  
Kuan-Nan Lin ◽  
Chiu-Wen Chen ◽  
Chih-Feng Chen ◽  
Yee Cheng Lim ◽  
Chih-Ming Kao ◽  
...  

The Fengshan River system is one of the major rivers in Kaohsiung City, Taiwan. This study investigated the concentration of eight phthalate esters (PAEs) in sediments of the river and the impact of potential ecological risks during the dry and wet seasons. The potential risk assessment of sediment PAEs was evaluated by adopting the total risk quotient (TRQ) method. The total PAEs concentrations (∑PAEs) in the sediments of the Fengshan River system are between 490–40,190 ng/g dw, with an average of 8418 ± 11,812 ng/g dw. Diisononyl phthalate (38.1%), bis(2-ethylhexyl) phthalate (36.9%) and di-isodecyl phthalate (24.3%) accounted for more than 99.3% of ∑PAEs. The concentration of ∑PAEs in sediments at the river channel stations is higher during the wet season (616–15,281 ng/g dw) than that during the dry season (490–1535 ng/g dw). However, in the downstream and estuary stations, the wet season (3975–6768 ng/g dw) is lower than the dry season (20,216–40,190 ng/g dw). The PAEs in sediments of the Fengshan River may have low to moderate potential risks to aquatic organisms. The TQR of PAEs in sediments at the downstream and estuary (TQR = 0.13) is higher than that in the upstream (TQR = 0.04). In addition, during the wet season, rainfall transported a large amount of land-sourced PAEs to rivers, leading to increased PAEs concentration and potential ecological risks in the upper reaches of the river.


Author(s):  
Chao-Yu Shen ◽  
Jun-Cheng Weng ◽  
Jeng-Dau Tsai ◽  
Pen-Hua Su ◽  
Ming-Chih Chou ◽  
...  

Previous studies have indicated that prenatal exposure to endocrine-disrupting chemicals (EDCs) can cause adverse neuropsychiatric disorders in children and adolescents. This study aimed to determine the association between the concentrations of prenatal EDCs and brain structure changes in teenagers by using MRI. We recruited 49 mother–child pairs during the third trimester of pregnancy, and collected and examined the concentration of EDCs—including phthalate esters, perfluorochemicals (PFCs), and heavy metals (lead, arsenic, cadmium, and mercury)—in maternal urine and/or serum. MRI voxel-based morphometry (VBM) and generalized q-sampling imaging (GQI) mapping—including generalized fractional anisotropy (GFA), normalized quantitative anisotropy (NQA), and the isotropic value of the orientation distribution function (ISO)—were obtained in teenagers 13–16 years of age in order to find the association between maternal EDC concentrations and possible brain structure alterations in the teenagers’ brains. We found that there are several specific vulnerable brain areas/structures associated with prenatal exposure to EDCs, including decreased focal brain volume, primarily in the frontal lobe; high frontoparietal lobe, temporooccipital lobe and cerebellum; and white matter structural alterations, which showed a negative association with GFA/NQA and a positive association with ISO, primarily in the corpus callosum, external and internal capsules, corona radiata, superior fronto-occipital fasciculus, and superior longitudinal fasciculus. Prenatal exposure to EDCs may be associated with specific brain structure alterations in teenagers.


Toxins ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 228 ◽  
Author(s):  
Vittoria Mallia ◽  
Lada Ivanova ◽  
Gunnar S. Eriksen ◽  
Emma Harper ◽  
Lisa Connolly ◽  
...  

Cyanobacteria are cosmopolitan photosynthetic prokaryotes that can form dense accumulations in aquatic environments. They are able to produce many bioactive metabolites, some of which are potentially endocrine disrupting compounds, i.e., compounds that interfere with the hormonal systems of animals and humans. Endocrine disruptors represent potential risks to both environmental and human health, making them a global challenge. The aim of this study was to investigate the potential endocrine disrupting activities with emphasis on estrogenic effects of extracts from cultures of Microcystis or Planktothrix species. We also assessed the possible role of microcystins, some of the most studied cyanobacterial toxins, and thus included both microcystin-producing and non-producing strains. Extracts from 26 cyanobacterial cultures were initially screened in estrogen-, androgen-, and glucocorticoid-responsive reporter-gene assays (RGAs) in order to identify endocrine disruption at the level of nuclear receptor transcriptional activity. Extracts from selected strains were tested repeatedly in the estrogen-responsive RGAs, but the observed estrogen agonist and antagonist activity was minor and similar to that of the cyanobacteria growth medium control. We thus focused on another, non-receptor mediated mechanism of action, and studied the 17β-estradiol (natural estrogen hormone) biotransformation in human liver microsomes in the presence or absence of microcystin-LR (MC-LR), or an extract from the MC-LR producing M. aeruginosa PCC7806 strain. Our results show a modulating effect on the estradiol biotransformation. Thus, while 2-hydroxylation was significantly decreased following co-incubation of 17β-estradiol with MC-LR or M. aeruginosa PCC7806 extract, the relative concentration of estrone was increased.


2007 ◽  
Vol 2 (4) ◽  
Author(s):  
M.J. McLaughlin ◽  
M. St.J. Warne ◽  
D.P. Stevens ◽  
M.S. Whatmuff ◽  
D. Heemsbergen ◽  
...  

The National Biosolids Research Program (NBRP) was established by the CSIRO Centre for Environmental Contaminants Research in 2002 in order to coordinate research relating to the benefits and risks of using biosolids for Australian agriculture. Prior to the establishment of the NBRP, research on biosolid use in agriculture had been concentrated in one state (New South Wales), with pockets of uncoordinated activity in other states. The NBRP is a coalition of seven research agencies around Australia, with support from several metropolitan and regional water authorities, and from several state environmental and natural resource management agencies. In terms of potential environmental risks, the NBRP initially concentrated on metals and focussed field experimentation on cadmium, copper and zinc. The research has subsequently moved onto examining potential risks from pathogens, pharmaceuticals, endocrine disrupting compounds and personal care products. As well as potential risks, the benefits of nutrients and organic matter in biosolids on crop growth are also being assessed, with various cropping systems around Australia being evaluated.


2008 ◽  
Vol 57 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Z. Zheng ◽  
P. J. He ◽  
H. Zhang ◽  
L. M. Shao

The facilitated transport of dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), the priority endocrine disrupting chemicals in sludge, by dissolved humic substances (HS) was evaluated by batch extraction. The DBP, much less hydrophobic than DEHP, was inclined to migrate from sludge matrix into humic substances solutions, while the DEHP could not migrate facilitated by most humic and fulvic acids solutions, except the humic acid surrogate of high humification. This result revealed that the affinity of DEHP in sludge matrix exceeded DBP and was not susceptible by weak HS. The hydrophobic property controlled the association of phthalic acid esters on sludge residual phases. Migration rate of DBP was positively correlated to the weight-average molecular weight of HS surrogates and the aromatic extents of HA. Some functional groups in HS molecules benefited to the facilitated transport of DBP.


2017 ◽  
Vol 228 (10) ◽  
Author(s):  
Muhammad Ali Surhio ◽  
Farah N. Talpur ◽  
Shafi M. Nizamani ◽  
Marvi Kanwal Talpur ◽  
Farah Amin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document