scholarly journals Phthalate Esters and Their Potential Risk in PET Bottled Water Stored under Common Conditions

Author(s):  
Xiangqin Xu ◽  
Gang Zhou ◽  
Kun Lei ◽  
Gerald A. LeBlanc ◽  
Lihui An

A great deal of attention has been paid lately to release of phthalate esters (PAEs) from polyethylene terephthalate (PET) bottles into PET bottled drinking water due to their potential endocrine-disrupting effects. Three kinds of PAEs, including diethyl phthalate (DEP), dimethyl phthalate (DMP) and dibutyl phthalate (DBP), were detected in 10 popular brands of PET bottles in Beijing, ranging from 101.97 μg/kg to 709.87 μg/kg. Meanwhile, six kinds of PAEs, including DEP, DMP, DBP, n-butyl benzyl phthalate (BBP), di-n-octyl phthalate (DOP) and di(2-ethylhexyl) phthalate (DEHP), were detected in PET bottled water, ranging from 0.19 μg/L to 0.98 μg/L, under an outdoor storage condition, while their concentrations ranged from 0.18 μg/L to 0.71 μg/L under an indoor storage condition. Furthermore, the concentrations of PAEs in brand D and E bottles were slightly increased when the storage time was prolonged. In addition, the concentrations of PAEs in commercial water contained in brand B and H bottles and pure water contained in brand E and G bottles were also slightly increased with the increase of storage temperature. Interestingly, DBP mainly contributed to the increased PAEs levels in simulation water. These results suggest that a part of the PAEs in PET bottled water originated from plastic bottles, which was related to the storage time and temperature. However, the PAEs in PET bottled water only pose a negligible risk to consumers if they follow the recommendations, such as storage at a common place (24 °C), away from sun and in a short period of time.

Author(s):  
F. Esteki ◽  
H. Karimi ◽  
M. Moazeni ◽  
Z. Esfandiari ◽  
M. Zarean ◽  
...  

Background: Phthalates are main ingredients of polyethylene terephthalate (PET) bottles used for storage of water. These compounds can cause adverse effects on human health. The purpose of this study was the quantification of the amounts of phthalates migrated in bottled water as well as the risk assessment of those compounds. Methods: This cross sectional study was performed on 15 PET bottled water samples of popular brands distributed in Isfahan city, Iran. The samples were immediately sent to laboratory for analysis. Amounts of Phthalic Anhydride (PA), di-2 ethylhexyl phthalate (DEHP), di-buthyl phthalate (DBP), di-ethyl phthalate (DEP), and terphthalic acid (TPA) in bottled water samples were measured using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Risk assessment of migrated compounds were calculated and com- pared with Hazard Quito (HQ) standards. Results: The ranges of PA, DEHP, DBP, and TPA were 2.3-26, 171-845, 30-2251, and 24-657 ppb, respectively. DEP was not found in none of the analyzed samples. HQ levels of DEHP, TPA, and DBP were more than 1 in bottled water. Conclusion: In the current study, the concentration of DEHP, TPA, and DBP in some bottled water of Isfahan, Iran were higher than the permitted limits. Also, HQ levels of these three migrated compounds were more than 1 in bottled water that is alarming for public health in this region of Iran.


1987 ◽  
Vol 50 (5) ◽  
pp. 390-397 ◽  
Author(s):  
GENARO GARCIA ◽  
CONSTANTIN GENIGEORGIS

The potential risk of C. botulinum growth in fresh fish stored under modified atmospheres (MA) remains unclear, as few qualitative studies have identified certain conditions leading to toxigenesis. This is the second paper of a series attempting to quantify the effect of selected parameters on the probability (P) of toxigenesis by one spore in fish. The factorially designed experiments included fresh salmon tissue homogenate with 3 levels of initial microbial flora (IMF) inoculated with a pool of spores of 13 nonproteolytic type B, E and F strains at 7 levels (10−2–104/3-g sample) and incubated at 1, 4, 8, 12, 16, and 30°C under 3 MA (vacuum, 100% CO2, 70% CO2 + 30% air) for up to 60 d. The earliest we observed toxicity at 30, 16, 12, 8 and 4°C irrespective of MA were 1, 2, 6, 9-12 and 15–>60 days and required 10°, 103–104, 102–103, 101–104 and 104 spores/sample, respectively. The probability of toxigenesis was affected significantly (P<0.05) by IMF, MA, storage temperature (T), storage time (ST) and the interactions T × ST, MA ×T, MA × ST, and IMF × T. Only type B toxin was detected in toxic samples. Using linear and logistic regression models, equations were derived which could estimate the length of the lag phase and the P of toxigenesis by one spore under a particular storage condition.


e-Polymers ◽  
2008 ◽  
Vol 8 (1) ◽  
Author(s):  
Mehdi Farhoodi ◽  
Zahra Emam-Djomeh ◽  
Mohammad Reza Ehsani ◽  
Abdolrasul Oromiehie

AbstractThe migration of di-(2-ethylhexyl) adipate (DEHA), di-(2-ethylhexyl) phthalate (DEHP) and ethylene glycol from PET bottles into the Iranian yogurt drink was studied. According to European Commission regulations acetic acid (3% w/v) was chosen as stimulant. The acetic acid samples were stored at 4, 25 and 45 °C for four months and analyzed periodically by gas chromatography. Differential scanning calorimetry (DSC) was used to investigate if contact with the food stimulant could affect the PET material. It was concluded that the storage temperature had a great effect on the migration of DEHP, DEHA and ethylene glycol. Also increasing storage time resulted in higher concentrations of migrating substances. The concentrations of migrating substances did not exceed their specific migration limit (EEC regulations). Determination of glass transition (Tg) and crystallinity of PET bottles using DSC method showed that the variations in the migration rate of selected contaminants during the time did not relate to the change of PET material in contact with 3% acetic acid.


2008 ◽  
Vol 57 (4) ◽  
pp. 607-612 ◽  
Author(s):  
Z. Zheng ◽  
P. J. He ◽  
H. Zhang ◽  
L. M. Shao

The facilitated transport of dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP), the priority endocrine disrupting chemicals in sludge, by dissolved humic substances (HS) was evaluated by batch extraction. The DBP, much less hydrophobic than DEHP, was inclined to migrate from sludge matrix into humic substances solutions, while the DEHP could not migrate facilitated by most humic and fulvic acids solutions, except the humic acid surrogate of high humification. This result revealed that the affinity of DEHP in sludge matrix exceeded DBP and was not susceptible by weak HS. The hydrophobic property controlled the association of phthalic acid esters on sludge residual phases. Migration rate of DBP was positively correlated to the weight-average molecular weight of HS surrogates and the aromatic extents of HA. Some functional groups in HS molecules benefited to the facilitated transport of DBP.


2016 ◽  
Vol 17 (3) ◽  
pp. 745-751 ◽  
Author(s):  
Hamidreza Pourzamani ◽  
Majid Falahati ◽  
Forouz Rastegari ◽  
Karim Ebrahim

Bottled water consumption has increased significantly in recent decades. Eighty percent of bottled water is sold in plastic containers usually made from polyethylene terephthalate (PET). Trace leaching of phthalate esters (PEs) from these bottles into the water and their effects on human health has become a serious concern. In this study, the effects of freezing on the release of PEs from PET bottles have been investigated. Four common PEs were determined in bottled water samples before and after freezing–remelting by a dispersive liquid–liquid micro-extraction method and gas chromatography–mass spectrometry (GC/MS) analysis. PE levels after freezing–remelting of samples were significantly lower than before (mean ± SD = 0.71 ± 0.28 and 0.33 ± 0.003 ppb, respectively). Electrical conductivity (EC) also decreased after freezing–remelting of the water (mean ± SD = 260.2 ± 80.6 and 130.6 ± 17.4 μs/cm, respectively). Significant correlation has been detected between reduction in water EC and elimination of PEs from water. Dissolved minerals and contaminants in water concentrate and conglomerate in the center of the ice during the freezing process and form white sediments mainly of calcium bicarbonate after remelting of the water. It seems that calcium bicarbonate effectively adsorbs PEs and traps them in its structures. These sediments do not have significant gastrointestinal absorption and cannot pose health consequences. The freezing–remelting process could be introduced as an effective procedure for water treatment.


mSystems ◽  
2021 ◽  
Author(s):  
Sean Ting-Shyang Wei ◽  
Yi-Lung Chen ◽  
Yu-Wei Wu ◽  
Tien-Yu Wu ◽  
Yi-Li Lai ◽  
...  

Xenobiotic phthalate esters (PAEs) have been produced on a considerably large scale for only 70 years. The occurrence of endocrine-disrupting di-(2-ethylhexyl) phthalate (DEHP) in environments has raised public concern, and estuarine sediments are major DEHP reservoirs.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 520e-520
Author(s):  
Juan E Manzano ◽  
Oswaldo Valor

Mango fruits `Criollo de Bocado' harvested at the mature-green stage were treated with a hydrothermic treatment of 55 °C for 3 min and stored for 20 days at temperatures of 10 ± 2, 15 ± 2 and 28 ± 2 °C. A randomized design 2 × 3 × 4 with three replications was used. Some chemical parameters were analyzed, such as total soluble solids content (% TSS), pH, tritatable acidity, and TSS/tritatable acidity ratio. TSS content increased with storage time at low temperature. The pH increased measurably with storage temperature, while tritatable acidity values results had inconsistent data.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Diksha Sirohi ◽  
Ruqaiya Al Ramadhani ◽  
Luke D. Knibbs

AbstractPurposeEndocrine-related diseases and disorders are on the rise globally. Synthetically produced environmental chemicals (endocrine-disrupting chemicals (EDCs)) mimic hormones like oestrogen and alter signalling pathways. Endometriosis is an oestrogen-dependent condition, affecting 10–15% of women of the reproductive age, and has substantial impacts on the quality of life. The aetiology of endometriosis is believed to be multifactorial, ranging from genetic causes to immunologic dysfunction due to environmental exposure to EDCs. Hence, we undertook a systematic review and investigated the epidemiological evidence for an association between EDCs and the development of endometriosis. We also aimed to assess studies on the relationship between body concentration of EDCs and the severity of endometriosis.MethodFollowing PRISMA guidelines, a structured search of PubMed, Embase and Scopus was conducted (to July 2018). The included studies analysed the association between one or more EDCs and the prevalence of endometriosis. The types of EDCs, association and outcome, participant characteristics and confounding variables were extracted and analysed. Quality assessment was performed using standard criteria.ResultsIn total, 29 studies were included. Phthalate esters were positively associated with the prevalence of endometriosis. The majority (71%) of studies revealed a significant association between bisphenol A, organochlorinated environmental pollutants (dioxins, dioxin-like compounds, organochlorinated pesticides, polychlorinated biphenyls) and the prevalence of endometriosis. A positive association between copper, chromium and prevalence of endometriosis was demonstrated in one study only. Cadmium, lead and mercury were not associated with the prevalence of endometriosis. There were conflicting results for the association between nickel and endometriosis. The relationship of EDCs and severity of endometriosis was not established in the studies.ConclusionWe found some evidence to suggest an association between phthalate esters, bisphenol A, organochlorinated environmental pollutants and the prevalence of endometriosis. Disentangling these exposures from various other factors that affect endometriosis is complex, but an important topic for further research.


2019 ◽  
Vol 8 (1) ◽  
pp. 138
Author(s):  
Chyntia Wulandari Eka Saputri ◽  
I. A. Rina Pratiwi Pudja ◽  
Pande Ketut Diah Kencana

Tujuan dari penelitian ini adalah untuk menentukan waktu perlakuan optimal dan suhu penyimpanan dingin untuk mutu kubis bunga. Penelitian ini menggunakan rancangan acak lengkap (RAL) yang terdiri dari dua faktor, faktor pertama adalah suhu yang digunakan dan faktor kedua adalah waktu selama show case. Faktor pertama terdiri dari dua level, yaitu (P1): show case temperature 8oC, dan (P2): show case temperature 15oC dan tambah kontrol (P0). Faktor kedua terdiri dari empat level, yaitu (A0): penyimpanan selama 0 jam, (A1): penyimpanan selama 12 jam, (A2): penyimpanan selama 16 jam, (A3): penyimpanan selama 20 jam dan diulang untuk 3 kali ulangan. Kubis bunga sebagai kontrol disimpan pada suhu kamar (28 ± 1 ?). Parameter kualitas yang diamati dalam penelitian ini termasuk penurunan berat badan, tingkat konsumsi O2, warna (warna berbeda), uji organoleptik termasuk umur simpan dan tingkat kerusakan. Hasil penelitian menunjukkan parameter penurunan susut bobot, laju konsumsi O2, warna, umur simpan, tingkat kerusakan pada suhu perlakuan suhu terbaik adalah suhu 8 ? dan waktu penyimpanan 20 jam (P1A3).Kata kunci: kembang kol, waktu penyimpanan, suhu penyimpanan dingin   The purpose of this study was to determine the optimal treatment time and cold storage temperature for the quality of cabbage flowers. This study uses a completely randomized design (CRD) consisting of two factors, the first factor is the temperature used and the second factor is the time during the showcase. The first factor consists of two levels, namely (P1): showcase temperature of 8oC, and (P2): showcase temperature of 15oC and added a control (P0). The second factor consists of four levels, namely (A0): storage for 0 hours, (A1): storage for 12 hours, (A2): storage for 16 hours, (A3): storage for 20 hours and repeated for 3 replications. Flower cabbage as control was stored at room temperature (28 ± 1 ?). The quality parameters observed in this study included weight loss, O2 consumption rate, color (color different), organoleptic tests including shelf life and damage level. The results showed the parameters of weight loss, O2 consumption rate, color, shelf life, damage rate at the best temperature of 8 ? and storage time of 20 hours (P1A3). Keywords: cauliflower, storage time, cold storage temperature


2019 ◽  
Vol 5 (1) ◽  
pp. 293-295
Author(s):  
Christina Pongratz ◽  
Jens Ziegle ◽  
Axel Boese ◽  
Michael Friebe ◽  
Helena Linge ◽  
...  

AbstractEx vivo lung perfusion (EVLP) is a preservation method for donor lungs, which keep lungs viable in a physiological environment outside of a body for a short period of time. EVLP is established clinically for lung transplantation. Experimental applications for EVLP are e.g. lung cancer research or medical device development and testing. For preservation, a lung is ventilated artificially in an organ chamber and perfused antegrade through the pulmonary artery. Here we introduce a thermoregulation system for an experimental EVLP system to be used for translational research approaches as well as for training medical staff. To implement physiological culture conditions that are a prerequisite for lung preservation and tissue homeostasis, a thermoregulation is needed to rewarm the explanted lung tissue (storage temperature 4°C). Technically, the EVLP system must be thermally insulated, so loss of caloric is avoided. For monitoring, temperature sensors are integrated within the lung, in the organ chamber and in the afferent perfusate tube, whereby the measured values determine the thermoregulation. Initial tests using thermal packs (cooled to 4-6°C) placed on a heating mat, as a part of the perfusion circuit, showed that the perfusate temperature falls to 34°C, but restores after approximately 60 minutes (36.5°C), whereby the thermal pack is warmed. With this setup longer perfusion times should be obtained rather than without thermoregulation due to normothermic perfusion of the lung.


Sign in / Sign up

Export Citation Format

Share Document