scholarly journals Adipose Tissue and Vascular Phenotypic Modulation by Voluntary Physical Activity and Dietary Restriction in Obese Insulin Resistant OLETF Rats

2014 ◽  
Vol 46 ◽  
pp. 713
Author(s):  
Jacqueline M. Crissey ◽  
Nathan T. Jenkins ◽  
Kasey A. Duncan ◽  
Pamela K. Thorne ◽  
David S. Bayless ◽  
...  
2014 ◽  
Vol 306 (8) ◽  
pp. R596-R606 ◽  
Author(s):  
Jacqueline M. Crissey ◽  
Nathan T. Jenkins ◽  
Kasey A. Lansford ◽  
Pamela K. Thorne ◽  
David S. Bayless ◽  
...  

Adipose tissue (AT)-derived cytokines are proposed to contribute to obesity-associated vascular insulin resistance. We tested the hypothesis that voluntary physical activity and diet restriction-induced maintenance of body weight would both result in decreased AT inflammation and concomitant improvements in insulin-stimulated vascular relaxation in the hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF) rat. Rats (aged 12 wk) were randomly assigned to sedentary (SED; n = 10), wheel running (WR; n = 10), or diet restriction (DR; n = 10; fed 70% of SED) for 8 wk. WR and DR rats exhibited markedly lower adiposity (7.1 ± 0.4 and 15.7 ± 1.1% body fat, respectively) relative to SED (27 ± 1.2% body fat), as well as improved blood lipid profiles and systemic markers of insulin resistance. Reduced adiposity in both WR and DR was associated with decreased AT mRNA expression of inflammatory genes (e.g., MCP-1, TNF-α, and IL-6) and markers of immune cell infiltration (e.g., CD8, CD11c, and F4/80). The extent of these effects were most pronounced in visceral AT compared with subcutaneous and periaortic AT. Markers of inflammation in brown AT were upregulated with WR but not DR. In periaortic AT, WR- and DR-induced reductions in expression and secretion of cytokines were accompanied with a more atheroprotective gene expression profile in the adjacent aortic wall. WR, but not DR, resulted in greater insulin-stimulated relaxation in the aorta; an effect that was, in part, mediated by a decrease in insulin-induced endothelin-1 activation in WR aorta. Collectively, we show in OLETF rats that lower adiposity leads to less AT and aortic inflammation, as well as an exercise-specific improvement in insulin-stimulated vasorelaxation.


Diabetes ◽  
1995 ◽  
Vol 44 (2) ◽  
pp. 141-146 ◽  
Author(s):  
M. A. Banerji ◽  
R. L. Chaiken ◽  
D. Gordon ◽  
J. G. Kral ◽  
H. E. Lebovitz

Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 478
Author(s):  
Hélder Fonseca ◽  
Andrea Bezerra ◽  
Ana Coelho ◽  
José Alberto Duarte

Background: Obesity is considered protective for bone mass, but this view has been progressively challenged. Menopause is characterized by low bone mass and increased adiposity. Our aim was to determine how visceral and bone marrow adiposity change following ovariectomy (OVX), how they correlate with bone quality and if they are influenced by physical activity. Methods: Five-month-old Wistar rats were OVX or sham-operated and maintained in sedentary or physically active conditions for 9 months. Visceral and bone marrow adiposity as well as bone turnover, femur bone quality and biomechanical properties were assessed. Results: OVX resulted in higher weight, visceral and bone marrow adiposity. Visceral adiposity correlated inversely with femur Ct.Th (r = −0.63, p < 0.001), BV/TV (r = −0.67, p < 0.001), Tb.N (r = −0.69, p < 0.001) and positively with Tb.Sp (r = 0.58, p < 0.001). Bone marrow adiposity also correlated with bone resorption (r = 0.47, p < 0.01), bone formation rate (r = −0.63, p < 0.01), BV/TV (r = −0.85, p < 0.001), Ct.Th (r = −0.51, p < 0.0.01), and with higher empty osteocyte lacunae (r = 0.39, p < 0.05), higher percentage of osteocytes with oxidative stress (r = 0.64, p < 0.0.01) and lower femur maximal stress (r = −0.58, p < 0.001). Physical activity correlated inversely with both visceral (r = −0.74, p < 0.01) and bone marrow adiposity (r = −0.92, p < 0.001). Conclusions: OVX increases visceral and bone marrow adiposity which are associated with inferior bone quality and biomechanical properties. Physical activity could contribute to reduce adipose tissue and thereby improve bone quality.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 656
Author(s):  
Giulia Foggi ◽  
Francesca Ciucci ◽  
Maria Conte ◽  
Laura Casarosa ◽  
Andrea Serra ◽  
...  

This study aimed to characterise the fibre composition of Triceps brachii (TB) and Semimembranosus (SM) muscles from 20 Maremmana (MA) and 20 Aubrac (AU) steers, and the effect of grazing activity in comparison with feedlot system. The histochemical method was performed with the m-ATPase method with an acid pre-incubation, thus allowing to distinguish type I, IIA, and IIB fibres. Additionally, on total RNA extracted from SM muscle, the expressions of atp1a1, mt-atp6, and capn1 genes were evaluated, in order to find potential associations with muscle fibre histochemical characteristics. In SM muscle, the MA steers had the greater frequency of oxidative fibres (type I and IIA) and the higher atp1a1 expression, in comparison to AU steers. Conversely, AU steers had a greater frequency of type IIB fibres, and the higher capn1 expression. A similar histochemical pattern was observed in TB muscle. The grazing activity was probably insufficient to determine differences both for fibre proportion and size, and gene expressions, except for mt-atp6 expression that was surprisingly highest in feedlot MA in comparison to other steers. These findings further the knowledge of muscle properties belonging to these breeds, and the effect of voluntary physical activity since few studies were available in this regard.


Author(s):  
Katia Motta ◽  
Amanda Marreiro Barbosa ◽  
Franciane Bobinski ◽  
Antonio Carlos Boschero ◽  
Alex Rafacho

2013 ◽  
Vol 305 (3) ◽  
pp. E429-E438 ◽  
Author(s):  
Erin J. Stephenson ◽  
Sarah J. Lessard ◽  
Donato A. Rivas ◽  
Matthew J. Watt ◽  
Ben B. Yaspelkis ◽  
...  

Impaired visceral white adipose tissue (WAT) metabolism has been implicated in the pathogenesis of several lifestyle-related disease states, with diminished expression of several WAT mitochondrial genes reported in both insulin-resistant humans and rodents. We have used rat models selectively bred for low- (LCR) or high-intrinsic running capacity (HCR) that present simultaneously with divergent metabolic phenotypes to test the hypothesis that oxidative enzyme expression is reduced in epididymal WAT from LCR animals. Based on this assumption, we further hypothesized that short-term exercise training (6 wk of treadmill running) would ameliorate this deficit. Approximately 22-wk-old rats (generation 22) were studied. In untrained rats, the abundance of mitochondrial respiratory complexes I–V, citrate synthase (CS), and PGC-1 was similar for both phenotypes, although CS activity was greater than 50% in HCR ( P = 0.09). Exercise training increased CS activity in both phenotypes but did not alter mitochondrial protein content. Training increased the expression and phosphorylation of proteins with roles in β-adrenergic signaling, including β3-adrenergic receptor (16% increase in LCR; P < 0.05), NOR1 (24% decrease in LCR, 21% decrease in HCR; P < 0.05), phospho-ATGL (25% increase in HCR; P < 0.05), perilipin (25% increase in HCR; P < 0.05), CGI-58 (15% increase in LCR; P < 0.05), and GLUT4 (16% increase in HCR; P < 0.0001). A training effect was also observed for phospho-p38 MAPK (12% decrease in LCR, 20% decrease in HCR; P < 0.05) and phospho-JNK (29% increase in LCR, 20% increase in HCR; P < 0.05). We conclude that in the LCR-HCR model system, mitochondrial protein expression in WAT is not affected by intrinsic running capacity or exercise training. However, training does induce alterations in the activity and expression of several proteins that are essential to the intracellular regulation of WAT metabolism.


2004 ◽  
Vol 89 (9) ◽  
pp. 4701-4707 ◽  
Author(s):  
A. M. Hershberger ◽  
M. R. McCammon ◽  
J. P. Garry ◽  
M. T. Mahar ◽  
R. C. Hickner

This investigation was conducted to determine whether there were differences in lipolytic responses to feeding and physical activity between lean (LN) and obese (OB) children, and if these responses were related to cortisol. Fourteen LN and 11 OB children participated in this study of abdominal lipolysis and salivary cortisol response to breakfast and lunch with an intervening exercise session. Calculated fasting glycerol release was lower in OB than LN (0.645 ± 0.06 vs. 0.942 ± 0.11 μmol/ml; P &lt; 0.05). Fasting adipose tissue nutritive flow was lower in OB than in LN subjects, but responses to feeding and exercise were not different. Breakfast elicited a decrease in interstitial glycerol concentration in LN (−33%; P &lt; 0.05), but not in OB (−5%), children, although decreases in glycerol concentration in response to lunch were similar (LN, −41%; OB, −36%). An interaction was evident in the salivary cortisol response to breakfast (LN, no change; OB, increase) and exercise (LN, no change; OB, decrease), but there were no group differences in response to lunch. Alterations in salivary cortisol and lipolysis were not related. These data suggest that salivary cortisol and lipolytic responses are not necessarily linked, but are altered in obesity. Furthermore, prior exercise may improve the antilipolytic response to a meal in OB children.


Sign in / Sign up

Export Citation Format

Share Document