scholarly journals Adipose tissue and vascular phenotypic modulation by voluntary physical activity and dietary restriction in obese insulin-resistant OLETF rats

2014 ◽  
Vol 306 (8) ◽  
pp. R596-R606 ◽  
Author(s):  
Jacqueline M. Crissey ◽  
Nathan T. Jenkins ◽  
Kasey A. Lansford ◽  
Pamela K. Thorne ◽  
David S. Bayless ◽  
...  

Adipose tissue (AT)-derived cytokines are proposed to contribute to obesity-associated vascular insulin resistance. We tested the hypothesis that voluntary physical activity and diet restriction-induced maintenance of body weight would both result in decreased AT inflammation and concomitant improvements in insulin-stimulated vascular relaxation in the hyperphagic, obese Otsuka Long-Evans Tokushima fatty (OLETF) rat. Rats (aged 12 wk) were randomly assigned to sedentary (SED; n = 10), wheel running (WR; n = 10), or diet restriction (DR; n = 10; fed 70% of SED) for 8 wk. WR and DR rats exhibited markedly lower adiposity (7.1 ± 0.4 and 15.7 ± 1.1% body fat, respectively) relative to SED (27 ± 1.2% body fat), as well as improved blood lipid profiles and systemic markers of insulin resistance. Reduced adiposity in both WR and DR was associated with decreased AT mRNA expression of inflammatory genes (e.g., MCP-1, TNF-α, and IL-6) and markers of immune cell infiltration (e.g., CD8, CD11c, and F4/80). The extent of these effects were most pronounced in visceral AT compared with subcutaneous and periaortic AT. Markers of inflammation in brown AT were upregulated with WR but not DR. In periaortic AT, WR- and DR-induced reductions in expression and secretion of cytokines were accompanied with a more atheroprotective gene expression profile in the adjacent aortic wall. WR, but not DR, resulted in greater insulin-stimulated relaxation in the aorta; an effect that was, in part, mediated by a decrease in insulin-induced endothelin-1 activation in WR aorta. Collectively, we show in OLETF rats that lower adiposity leads to less AT and aortic inflammation, as well as an exercise-specific improvement in insulin-stimulated vasorelaxation.

2021 ◽  
Vol 19 (1) ◽  
pp. 21-28
Author(s):  
P. Tayfur ◽  
K. Gökçe Tezel ◽  
Ö. Barutçu ◽  
S. Yılmaz ◽  
E. Ö. Özgür ◽  
...  

A fructose-rich diet has been known to cause metabolic syndrome effects such as body weight gain, increased blood pressure, blood lipids and glucose levels. The role of voluntary physical activity in these alterations is not known clearly. The aim of this study was to investigate the possible improving effects of voluntary physical activity in rats that were feeding with a fructose-rich diet. Spraque-Dawley female rats were separated as control (C;n=7), voluntary physical activity (A;n=7), fructose (F;n=7) and fructose+activity (F+A;n=7) groups. A and FA groups were kept in cages with running wheels during six weeks. F and FA groups were fed with adding 20% fructose in drinking water. Body weight was measured weekly and Lee Index was used to determine obesity. At the end of the feeding period serum glucose, insulin and lipid levels were measured by enzymatic method and blood pressure was determined with the tail-cuff method. Daily voluntary walking distance in F+A and A groups were similar during six weeks. Fructose intake induced to increase systolic blood pressure (p=0.001), diastolic blood pressure (p=0.002), glucose (p=0.041), insulin (p=0.001), cholesterol (p=0.001), triglyceride (p=0.001) and liver weight (p=0.035). The voluntary activity was found effective on the decrease of weight gain (p=0.018) however we did not observe a significant effect on blood pressure (p=0.917) and insulin resistance (p=0.565) following the fructose-rich diet. We conclude that voluntary activity has preventive effect on obesity but may not to be effective on increased blood pressure and insulin resistance in female rats which were feeding fructose-rich diet during six weeks.


Author(s):  
Jalaledin Mirzay Razzaz ◽  
Hossein Moameri ◽  
Zahra Akbarzadeh ◽  
Mohammad Ariya ◽  
Seyed ali Hosseini ◽  
...  

Abstract Objectives Insulin resistance is the most common metabolic change associated with obesity. The present study aimed to investigate the relationship between insulin resistance and body composition especially adipose tissue in a randomized Tehrani population. Methods This study used data of 2,160 individuals registered in a cross-sectional study on were randomly selected from among subjects who were referred to nutrition counseling clinic in Tehran, from April 2016 to September 2017. Insulin resistance was calculated by homeostasis model assessment formula. The odds ratio (95% CI) was calculated using logistic regression models. Results The mean age of the men was 39 (±10) and women were 41 (±11) (the age ranged from 20 to 50 years). The risk of increased HOMA-IR was 1.03 (95% CI: 1.01–1.04) for an increase in one percent of Body fat, and 1.03 (95% CI: 1.00–1.05) for an increase in one percent of Trunk fat. Moreover, the odds ratio of FBS for an increase in one unit of Body fat percent and Trunk fat percent increased by 1.05 (adjusted odds ratio [95% CI: 1.03, 1.06]) and 1.05 (95% CI: 1.02, 1.08). Also, the risk of increased Fasting Insulin was 1.05 (95% CI: 1.03–1.07) for an increase in one unit of Body fat percent, and 1.05 (95% CI: 1.02–1.08) for an increase in one unit of Trunk fat percent. Conclusions The findings of the present study showed that there was a significant relationship between HOMA-IR, Fasting blood sugar, Fasting Insulin, and 2 h Insulin with percent of Body fat, percent of Trunk fat.


Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Amanda E Staiano ◽  
Stephanie T Broyles ◽  
Alok K Gupta ◽  
Peter T Katzmarzyk

Introduction: Expansion of visceral adipose tissue (VAT) associates with adverse metabolic changes. While regular moderate-to-vigorous activity is associated with lower total body fat in children and adolescents, it is unknown how physical activity relates to other adiposity indices, including VAT. Hypothesis: We hypothesized that regular physical activity in children and adolescents associates with lower body fat, percent body fat, abdominal subcutaneous adipose tissue (SAT), and VAT. Methods: The sample included 393 boys and girls aged 5–18 years (45.6% White, 50.6% African American, and 3.8% Other). Body fat and percent body fat were measured by dual-energy x-ray absorptiometry. Abdominal SAT and VAT mass were measured by magnetic resonance imaging between the highest point of the liver and the lower pole of the right kidney (using 5 to 8 cross-sectional slices, 4.76 cm apart). Participants were categorized as being regularly active by self-report: moderate-to-vigorous physical activity of ≥ 60 minutes/day, ≥ 4 days/week. Those who were physically active fewer than 4 days/week were categorized as not regularly active. Results: In this sample of children and adolescents, 45.6% of participants were regularly active. One-way ANCOVAs adjusted for age and sex demonstrated that regularly active youth had significantly less body fat (p<0.01) and lower percent body fat (p<0.01) than those who were not regularly active. One-way ANCOVAs adjusted for age, gender, and body fat, revealed that regularly active children and adolescents had no difference in SAT but had significantly lower amounts of VAT (p<0.05) when compared to those who were not regularly active. Conclusion: Engagement in moderate-to-vigorous physical activity for at least 60 minutes on four or more days of the week in children and adolescents was related to lower body fat, percent body fat and VAT, when compared to those youth who were less active. The promotion of regular physical activity has significant public health implications for body fat accumulation and for controlling excess VAT during childhood and adolescence.


Author(s):  
Riki Tanaka ◽  
Sayuri Fuse ◽  
Miyuki Kuroiwa ◽  
Shiho Amagasa ◽  
Tasuki Endo ◽  
...  

Brown adipose tissue (BAT) plays a role in adaptive thermogenesis in response to cold environments and dietary intake via sympathetic nervous system (SNS) activation. It is unclear whether physical activity increases BAT density (BAT-d). Two-hundred ninety-eight participants (age: 41.2 ± 12.1 (mean ± standard deviation), height: 163.6 ± 8.3 cm, weight: 60.2 ± 11.0 kg, body mass index (BMI): 22.4 ± 3.0 kg/m2, body fat percentage: 25.4 ± 7.5%) without smoking habits were categorized based on their physical activity levels (a group performing physical activities including walking and moderate physical activity (WM) and a group performing WM + vigorous-intensity physical activities (VWM)). We measured the total hemoglobin concentration ([Total-Hb]) in the supraclavicular region, an index of BAT-d, and anthropometric parameters. [Total-Hb] was significantly higher in VWM than WM for all participant groups presumably owing to SNS activation during vigorous-intensity physical activities, and unrelated to the amount of total physical activity levels. Furthermore, multiple regression analysis revealed that BAT-d was related to visceral fat area and VWM in men and related to body fat percentage in women. We conclude that vigorous-intensity physical activities are associated with high BAT-d in humans, especially in men.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Saeid Golbidi ◽  
Ismail Laher

The lack of adequate physical activity and obesity created a worldwide pandemic. Obesity is characterized by the deposition of adipose tissue in various parts of the body; it is now evident that adipose tissue also acts as an endocrine organ capable of secreting many cytokines that are though to be involved in the pathophysiology of obesity, insulin resistance, and metabolic syndrome. Adipokines, or adipose tissue-derived proteins, play a pivotal role in this scenario. Increased secretion of proinflammatory adipokines leads to a chronic inflammatory state that is accompanied by insulin resistance and glucose intolerance. Lifestyle change in terms of increased physical activity and exercise is the best nonpharmacological treatment for obesity since these can reduce insulin resistance, counteract the inflammatory state, and improve the lipid profile. There is growing evidence that exercise exerts its beneficial effects partly through alterations in the adipokine profile; that is, exercise increases secretion of anti-inflammatory adipokines and reduces proinflammatory cytokines. In this paper we briefly describe the pathophysiologic role of four important adipokines (adiponectin, leptin, TNF-α, and IL-6) in the metabolic syndrome and review some of the clinical trials that monitored these adipokines as a clinical outcome before and after exercise.


2007 ◽  
Vol 32 (4) ◽  
pp. 711-720 ◽  
Author(s):  
Karyn A. Esser ◽  
Wen Su ◽  
Sergey Matveev ◽  
Vicki Wong ◽  
Li Zeng ◽  
...  

Physical activity reduces cardiovascular disease related mortality in diabetic patients. However, it is unknown if the diabetic state reduces voluntary physical activity and, if so, if the voluntary physical activity at the reduced level is sufficient to improve cardiovascular risk factors. To address these two specific questions, we investigated voluntary wheel running performance in an obese and type 2 diabetic mouse model, the db/db mice. In addition, we determined the effects of running on body mass, blood glucose, insulin, plasma free fatty acids, cholesterol, and vascular smooth muscle hyper-contractility. Our results showed that daily running distance, time, and speed were significantly reduced in the db/db mice to about 23%, 32%, and 71%, respectively, of that in non-diabetic control mice. However, this low level of running was sufficient to induce a reduction in the vascular smooth muscle hyper-contractility, cholesterol, and some plasma free fatty acids, as well as to delay the decrease in blood insulin. These changes occurred in the absence of weight loss and a detectable decrease in blood glucose. Thus, the results of this study demonstrated that voluntary wheel running activity was dramatically reduced in db/db mice. However, the low levels of running were beneficial, in the absence of effects on obesity or blood glucose, with significant reductions in cardiovascular risk factors and potential delays in β-cell dysfunction.


2015 ◽  
Vol 47 ◽  
pp. 189-190
Author(s):  
Jeffrey S. Otis ◽  
Jessica L. Sarvas ◽  
Neelam Khaper ◽  
Simon J. Lees

Sign in / Sign up

Export Citation Format

Share Document