Lipid Analysis by near Infrared Spectroscopy to Evaluate Inhibitory Effects of Swine Waste Compost on Plant Growth

2008 ◽  
Vol 16 (5) ◽  
pp. 481-486 ◽  
Author(s):  
Takayuki Fujiwara ◽  
Keiichi Murakami

The lipid content of swine manure decreases during the process of composting, and inhibitory effects of compost on root growth in germination tests are strongly correlated to lipid content. Therefore, we tested whether the determination of the lipid content of swine waste compost by near infrared (NIR) spectroscopy provided a measure by which the degree of inhibition of plant growth by immature compost could be predicted. Reflectance spectra of untreated compost samples, as well as freeze-dried and milled samples, were taken using a scanning monochromator. Second derivative spectra from 700 nm to 2500 nm and multiple regression analysis were used to develop calibration equations for lipid content and moisture. A pronounced absorption peak of lipid was found at 2310 nm, attributable to the absorption bands of the CH2 stretching–bending combination. However, calibration equations containing this absorption band were inappropriate for lipid determination, because sawdust and rice husk, which were added to the compost, influenced the spectra in this band. The standard error of prediction ( SEP) of the best calibrations for lipids in dry and untreated samples was 6.0 g kg−1 and 3.2 g kg−1, while the ratios of the standard deviation and the range in the prediction set to SEP (RPD and RER) were 5.5 and 2.8, and 13.5 and 5.0, respectively. The main wavelengths of these calibration equations were 1700 nm for dry samples and 1764 nm for untreated samples, which were attributed to the absorption bands of the CH2 stretching first overtone. In conclusion, the determination of lipid content in dry compost samples by NIR spectroscopy provided an indirect estimate of the maturity of swine waste compost. Moreover, NIR spectroscopy was found useful for the rough assessment of the maturity of untreated swine waste compost.

Detritus ◽  
2020 ◽  
pp. 62-66
Author(s):  
Xiaozheng Chen ◽  
Nils Kroell ◽  
Alexander Feil ◽  
Thomas Pretz

In food and medical packaging, multiple layers of different polymers are combined in order to achieve optimal functional properties for various applications. Flexible multilayer plastic packaging achieves a reduction in weight compared to other packaging products with the same function, saving material and in transportation costs. Recycling of post-industrial multilayer packaging was achieved by some companies, but the available technologies are limited to specific polymer types. For post-consumer waste, recycling of multilayer packaging has not been achieved yet. One of the main challenges in plastic sorting is that the detection and separation of multilayer packaging from other materials is not possible yet. In this study, the possibility to detect and sort flexible multilayer plastic packaging was investigated with near-infrared spectroscopy, which is the state-of-the-art technology for plastic sorting. The results show that from a detection and classification point of view, sorting of monolayer, two- and three-layers samples under laboratory conditions is possible. According to the captured data, the sequence of layers has little influence on the spectra. In case of glossy samples, the spectra are influenced by printed surfaces. With an increase in thickness, the spectra get more characteristic, which makes the classification easier. Our results indicate that the sorting of post-consumer multilayer plastic packaging by main composition is theoretically achievable.


2004 ◽  
Vol 34 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Mulualem Tigabu ◽  
Per Christer Odén ◽  
Tong Yun Shen

The use of near-infrared (NIR) spectroscopy to discriminate between uninfested seeds of Picea abies (L.) Karst and seeds infested with Plemeliella abietina Seitn (Hymenoptera, Torymidae) larva is sensitive to seed origin and year of collection. Five seed lots collected during different years from Sweden, Finland, and Belarus were used in this study. Initially, seeds were classified as infested or uninfested with X-radiography, and then, NIR spectra from single seeds were collected with a NIR spectrometer from 1100 to 2498 nm with a resolution of 2 nm. Discriminant models were derived by partial least squares regression using raw and orthogonal signal corrected spectra (OSC). The resulting OSC model developed on a pooled data set was more robust than the raw model and resulted in 100% classification accuracy. Once irrelevant spectral variations were removed by using OSC pretreatment, single-lot calibration models resulted in similar classification rates for the new samples irrespective of origin and year of collection. Dis criminant analyses performed with selected NIR absorption bands also gave nearly 100% classification rate for new samples. The origin of spectral differences between infested and uninfested seeds was attributed to storage lipids and proteins that were completely depleted in the former by the feeding larva.


2018 ◽  
Vol 6 (4) ◽  
pp. 147 ◽  
Author(s):  
Marta Lopes ◽  
Ana Amorim ◽  
Cecília Calado ◽  
Pedro Reis Costa

Harmful algal blooms are responsible worldwide for the contamination of fishery resources, with potential impacts on seafood safety and public health. Most coastal countries rely on an intense monitoring program for the surveillance of toxic algae occurrence and shellfish contamination. The present study investigates the use of near infrared (NIR) spectroscopy for the rapid in situ determination of cell concentrations of toxic algae in seawater. The paralytic shellfish poisoning (PSP) toxin-producing dinoflagellate Gymnodinium catenatum was selected for this study. The spectral modeling by partial least squares (PLS) regression based on the recorded NIR spectra enabled the building of highly accurate (R2 = 0.92) models for cell abundance. The models also provided a good correlation between toxins measured by the conventional methods (high-performance liquid chromatography with fluorescence detection (HPLC-FLD)) and the levels predicted by the PLS/NIR models. This study represents the first necessary step in investigating the potential of application of NIR spectroscopy for algae bloom detection and alerting.


2011 ◽  
Vol 49 (No. 11) ◽  
pp. 500-510 ◽  
Author(s):  
M. Prevolnik ◽  
M. Čandek-Potokar ◽  
D. Škorjanc

In contrast to conventional methods for the determination of meat chemical composition and quality, near infrared spectroscopy (NIRS) enables rapid, simple and simultaneous assessment of numerous meat properties. The present article is a review of published studies that examined the ability of NIRS to predict different meat properties. According to the published results, NIRS shows a great potential to replace the expensive and time-consuming chemical analysis of meat composition. On the other hand, NIRS is less accurate for predicting different attributes of meat quality. In view of meat quality evaluation, the use of NIRS appears more promising when categorizing meat into quality classes on the basis of meat quality traits for example discriminating between feeding regimes, discriminating fresh from frozen-thawed meat, discriminating strains, etc. The performance of NIRS to predict meat properties seems limited by the reliability of the method to which it is calibrated. Moreover, the use of NIRS may also be limited by the fact that it needs a laborious calibration for every purpose. In spite of that, NIRS is considered to be a very promising method for rapid meat evaluation.    


Molecules ◽  
2019 ◽  
Vol 24 (13) ◽  
pp. 2486 ◽  
Author(s):  
Shupei Xiao ◽  
Yong He

Soil nitrogen is the key parameter supporting plant growth and development; it is also the material basis of plant growth. An accurate grasp of soil nitrogen information is the premise of scientific fertilization in precision agriculture, where near-infrared (NIR) spectroscopy is widely used for rapid detection of soil nutrients. In this study, the variation law of soil NIR reflectivity spectra with soil particle sizes was studied. Moreover, in order to precisely study the effect of particle size on soil nitrogen detection by NIR, four different spectra preprocessing methods and five different chemometric modeling methods were used to analyze the soil NIR spectra. The results showed that the smaller the soil particle sizes, the stronger the soil NIR reflectivity spectra. Besides, when the soil particle sizes ranged 0.18–0.28 mm, the soil nitrogen prediction accuracy was the best based on the partial least squares (PLS) model with the highest Rp2 of 0.983, the residual predictive deviation (RPD) of 6.706. The detection accuracy was not ideal when the soil particle sizes were too big (1–2 mm) or too small (0–0.18 mm). In addition, the relationship between the mixing spectra of six different soil particle sizes and the soil nitrogen detection accuracy was studied. It was indicated that the larger the gap between soil particle sizes, the worse the accuracy of soil nitrogen detection. In conclusion, soil nitrogen detection precision was affected by soil particle sizes to a large extent. It is of great significance to optimize the pre-treatments of soil samples to realize rapid and accurate detection by NIR spectroscopy.


2020 ◽  
Vol 28 (5-6) ◽  
pp. 308-314
Author(s):  
Emilie Champagne ◽  
Michaël Bonin ◽  
Alejandro A Royo ◽  
Jean-Pierre Tremblay ◽  
Patricia Raymond

Terpenes are phytochemicals found in multiple plant genera, especially aromatic herbs and conifers. Terpene content quantification is costly and complex, requiring the extraction of oil content and gas chromatography analyses. Near infrared (NIR) spectroscopy could provide an alternative quantitative method, especially if calibration can be developed with the spectra of dried plant material, which are easier and faster to acquire than oil-based spectra. Here, multispecies NIR spectroscopy calibrations were developed for total terpene content (mono- and sesquiterpenes) and for specific terpenes (α-pinene, β-pinene and myrcene) with five conifers species ( Picea glauca, Picea rubens, Pinus resinosa, Pinus strobus and Thuja occidentalis). The terpene content of fresh shoot samples was quantified with gas chromatography. The NIR spectra were measured on freeze-dried samples (n = 137). Using a subset of the samples, modified partial least squares regressions of total terpene and the three individual terpenes content were generated as a functions of the NIR spectra. The standard errors of the internal cross-validations (values between 0.25 and 2.28) and the ratio of prediction to deviation ratios (RPD values between 2.20 and 2.38) indicate that all calibrations have similar accuracy. The independent validations, however, suggest that the calibrations for total terpene and α-pinene content are more accurate (respective coefficient of determination: r2 = 0.85 and 0.82). In contrast, calibrations for β-pinene and myrcene had a low accuracy (respectively: r2 = 0.62 and 0.08), potentially because of the low concentration of these terpenes in the species studied. The calibration model fits (i.e., r2) are comparable to previously published calibration using the spectra of dried shoot samples and demonstrate the potential of this method for terpenes in conifer samples. The calibration method used could be useful in several other domains (e.g. seedling breeding program, industrial), because of the wide distribution of terpenes and especially of pinenes.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Mohd Yusop Nurida ◽  
Dolmat Norfadilah ◽  
Mohd Rozaiddin Siti Aishah ◽  
Chan Zhe Phak ◽  
Syafiqa M. Saleh

The analytical methods for the determination of the amine solvent properties do not provide input data for real-time process control and optimization and are labor-intensive, time-consuming, and impractical for studies of dynamic changes in a process. In this study, the potential of nondestructive determination of amine concentration, CO2 loading, and water content in CO2 absorption solvent in the gas processing unit was investigated through Fourier transform near-infrared (FT-NIR) spectroscopy that has the ability to readily carry out multicomponent analysis in association with multivariate analysis methods. The FT-NIR spectra for the solvent were captured and interpreted by using suitable spectra wavenumber regions through multivariate statistical techniques such as partial least square (PLS). The calibration model developed for amine determination had the highest coefficient of determination (R2) of 0.9955 and RMSECV of 0.75%. CO2 calibration model achieved R2 of 0.9902 with RMSECV of 0.25% whereas the water calibration model had R2 of 0.9915 with RMSECV of 1.02%. The statistical evaluation of the validation samples also confirmed that the difference between the actual value and the predicted value from the calibration model was not significantly different and acceptable. Therefore, the amine, CO2, and water models have given a satisfactory result for the concentration determination using the FT-NIR technique. The results of this study indicated that FT-NIR spectroscopy with chemometrics and multivariate technique can be used for the CO2 solvent monitoring to replace the time-consuming and labor-intensive conventional methods.


2019 ◽  
Vol 1 (2) ◽  
pp. 246-256
Author(s):  
Benjamaporn Matulaprungsan ◽  
Chalermchai Wongs-Aree ◽  
Pathompong Penchaiya ◽  
Phonkrit Maniwara ◽  
Sirichai Kanlayanarat ◽  
...  

Shredded cabbage is widely used in much ready-to-eat food. Therefore, rapid methods for detecting and monitoring the contamination of foodborne microbes is essential. Short wavelength near infrared (SW-NIR) spectroscopy was applied on two types of solutions, a drained solution from the outer surface of the shredded cabbage (SC) and a ground solution of shredded cabbage (GC) which were inoculated with a mixture of two bacterial suspensions, Escherichia coli and Salmonella typhimurium. NIR spectra of around 700 to 1100 nm were collected from the samples after 0, 4, and 8 h at 37 °C incubation, along with the growth of total bacteria, E. coli and S. typhimurium. The raw spectra were obtained from both sample types, clearly separated with the increase of incubation time. The first derivative, a Savitzky–Golay pretreatment, was applied on the GC spectra, while the second derivative was applied on the SC spectra before developing the calibration equation, using partial least squares regression (PLS). The obtained correlation (r) of the SC spectra was higher than the GC spectra, while the standard error of cross-validation (SECV) was lower. The ratio of prediction of deviation (RPD) of the SC spectra was higher than the GC spectra, especially in total bacteria, quite normal for the E. coli but relatively low for the S. typhimurium. The prediction results of microbial spoilage were more reliable on the SC than on the GC spectra. Total bacterial detection was best for quantitative measurement, as E. coli contamination could only be distinguished between high and low values. Conversely, S. typhimurium predictions were not optimal for either sample type. The SW-NIR shows the feasibility for detecting the existence of microbes in the solution obtained from SC, but for a more specific application for discrimination or quantitation is needed, proving further research in still required.


Sign in / Sign up

Export Citation Format

Share Document