scholarly journals Experimental Research of Piece-Mold Casting: Gilt-Bronze Pensive Bodhisattva

2021 ◽  
Vol 37 (4) ◽  
pp. 340-356
Author(s):  
Yong-Hyun Yun ◽  
Nam-Chul Cho ◽  
Jung-Mann Doh

We have tried the experimental research of lost-wax casting to reconstruct Gilt-Bronze Pensive Bodhisattva; preliminary and reconstruction experiment based on ancient texts. Main object to reconstruct is Korean National Treasure No.83, Gilt-Bronze Pensive Bodhisattva (Maitreya), then we measure alloy ratio and casting method based on the scientific analysis. Other impurities were removed from the base metal components(copper : tin : lead) and their ratio was set to 95.5 : 6.5 : 3 where the ratios for tin and lead were increased by 2.5% each. The piece-mold casting method was used, and piece-mold casting experiments were carried out twice in this study but supplementary research on piece-mold casting was necessary. The microstructure was confirmed to be typical cast microstructure and the component analysis result was similar to that of the prior study. Analysis of the chemical composition is confirmed to copper, tin, lead, and zinc, and the chemical composition of the matrix was 87.8%Cu-7.5%Sn-2.7%Pb-2.1%Zn, and similar to previous experimental research. Also resulted in the detection of small impurity in Zn. Analysis of the mould revealed that the mould was fabricated by adding quartz and organic matter for structural stability, fire resistance, and air permeability. We expect that our research will contribute to provide base data for advanced researches in future.

1993 ◽  
Vol 329 ◽  
Author(s):  
Vivien D.

AbstractIn this paper the relationships between the crystal structure, chemical composition and electronic structure of laser materials, and their optical properties are discussed. A brief description is given of the different laser activators and of the influence of the matrix on laser characteristics in terms of crystal field strength, symmetry, covalency and phonon frequencies. The last part of the paper lays emphasis on the means to optimize the matrix-activator properties such as control of the oxidation state and site occupancy of the activator and influence of its concentration.


1896 ◽  
Vol 3 (8) ◽  
pp. 365-371
Author(s):  
H. H. F. Hyndman ◽  
T. G. Bonney

The differences in chemical composition between spherulites and the matrices which contain them have been determined by many analysts. Michel Lévy, in a long and comprehensive paper, quotes some former analyses by Delesse, comparing them with his own, which they closely resembled. Lagario gives many analyses which are especially valuable, as he compares results from acid with those from intermediate and basic rocks, and finds a distinct difference between them. The relations of these results will be briefly considered at the end of the present paper.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Ding Hualun

This paper chooses magnesium as the matrix of composite materials, selects carbon fi ber as reinforcement, anddesigns the composite scheme according to the structure and performance of Mg-based composites. The performancecharacteristics and application prospect of fiber-reinforced magnesium matrix composites are introduced. Wait. Inthis paper, the process of preparing carbon fi ber magnesium matrix composites by compression casting method andspray deposition method is designed. The process fl ow chart of these two design schemes is determined by analyzingthe principle of these two kinds of preparation methods, and the specifi c problems of the process are analyzed andsummarized.


2010 ◽  
Vol 139-141 ◽  
pp. 557-560
Author(s):  
Wen Bin Sheng ◽  
Chun Xue Ma ◽  
Wan Li Gu

TiAl-based alloy valves were manufactured by combining charges compressed /vacuum arc melting (VA)/ induction skull melting (ISM) procedure with permanent mold centrifugal casting method. Microstructures, compositions and mechanical properties of as-cast and hot isostatical pressed (HIPed) valves are detected. Results show that the permanent mold centrifugal casting process obviously refines the size of grain in TiAl alloy and the tensile strength of as-cast and HIPed valves are 550MPa and 580MPa at 20°C, 370MPa and 470MPa at 815°C, respectively. As-cast specimens show ~0% elongation at 20°C and 1~2% at 815°C, while HIPed ones show an elongation of 1~2% at room temperature and about 10% at 815°C. Furthermore, a 200-hour test was carried out with CA4GE-engine, which demonstrated the possibility of as-cast TiAl alloy valves for the substitution of present steel ones.


2017 ◽  
Vol 25 (3) ◽  
pp. 209-214 ◽  
Author(s):  
G. Venkatachalam ◽  
A. Kumaravel

This paper presents the characterization of A356 composite reinforced with fly ash and basalt ash produced by stir casting method. Aluminium metal matrix composites (AMC) are used in wide variety of applications such as structural, aerospace, marine, automotive etc. Stir casting is cost effective manufacturing process and it is useful to enhance the attractive properties of AMCs. Three sets of hybrid AMC are prepared by varying the weight fraction of the reinforcements (3% basalt + 7% fly ash, 5% basalt + 5% fly, 7% basalt + 3% fly ash). The effect of reinforcements on the mechanical properties of the hybrid composites such as hardness, tensile, compressive and impact strength were studied. The obtained results reveal that tensile, compressive and impact strength was increased when weight fraction of fly ash increased, whereas the hardness increases when weight fraction of the basalt ash increased. Microscopic study reveals the dispersion of the reinforcements in the matrix.


2018 ◽  
Vol 188 ◽  
pp. 02017
Author(s):  
Fulya Kahrıman ◽  
Muzaffer Zeren

In this study, the chemical composition of Al-0.8Mg-0.8Si alloys was modified with the addition of 0.1 and 0.2 wt.-% Zr. The billets were manufactured by direct chill casting method, homogenized at 560 °C for 6h and then extruded in order to obtain profiles having hollow and circular sections. Recrystallization layer (shell) became narrower due to the addition of Zr. This was attributed to the formation of very fine precipitates (Al3Zr) within the matrix. The mechanical properties showed that both yield and tensile strengths increased as a function of Zr content. Tensile fracture surfaces were examined by scanning electron microscope and the fractographs reflected the effect of grain structure on the fracture behavior of studied alloys. All fracture surfaces indicated typical dimple ruptures, however, the size of dimples were observed as finer structures as a function of Zr content. As seen in cross-sectional graphs, as the Zr content increased the grain structure was refined due to Al3Zr precipitates. These fine precipitates caused the formation of fine and shallow dimples under loading.


2012 ◽  
Vol 184-185 ◽  
pp. 1255-1258
Author(s):  
Zhuang Li ◽  
Di Wu ◽  
Wei Lv

The important factors that affect the formability of the cold forging steel are its surface quality and internal defects. The cracking phenomenon was taken place during cold forging of ML25Mn steel. In this study, microstructural analyses were made on around the cracked regions of the steel. The reason of cracking, which occurred during cold forging for ML25Mn steel, was investigated based on SEM observation in detail. The results have shown that the crack forming during cold forging process is not related to the chemical composition for ML25Mn steel. Cracking is not resulted from high hardness of the steel rods. There are some non-metallic inclusions in the matrix of ML25Mn steel, and the film-like inclusions are composed of MnS, CaS and complex oxides containing Mg, Al, Mn, Fe, S, Ca and O. The formation of non-metallic inclusions is the result of the deoxidation and the solidification during smelting and casting of steel.


2006 ◽  
Vol 74 (10) ◽  
Author(s):  
S. Rohart ◽  
C. Raufast ◽  
L. Favre ◽  
E. Bernstein ◽  
E. Bonet ◽  
...  

2018 ◽  
Vol 788 ◽  
pp. 108-113
Author(s):  
Anna Trubaca-Boginska ◽  
Andris Actins ◽  
Ruta Švinka ◽  
Visvaldis Švinka

Determining the quantitative composition of clay samples with X-ray fluorescent spectrometry is complicated because of the matrix effect, in which any element can increase or decrease the analytical signals of other elements. In order to predict the properties of clays, it is essential to know their precise chemical composition. Therefore, using the standard addition method was determined calibration and empirical influence coefficients, as well as the true composition of the elements. Farther, these coefficients were used to correct the matrix effect and develop a multi-parameter optimization method. It was determined that in clay samples, consisting of Si, Al, Fe, K, Mg, Ca, Na and Ti oxide formula units, the most significant contribution for matrix effect correction calculations was from the calibration coefficients. Moreover, the largest deviation from the X-ray fluorescent data and true values was determined in the MgO and Na2O cases. In this study was established, that the developed multi-parameter method can be successfully applied to determine the quantitative chemical composition of clay samples of similar compositions.


2020 ◽  
Vol 402 ◽  
pp. 100-107
Author(s):  
Akhyar ◽  
Husaini ◽  
Masri Ali ◽  
Nurdin Ali ◽  
Farhan Ahmad

The bicycle frame produced through the metal casting process by recycling aluminum alloys can be an environmentally friendly alternative solution. Mold types and gating systems used generally affects the quality of the casting product. In this experiment, the effect of gating number and riser type variations (for sand binder) observed on casting defects, hardness, and impact value. Subsequently, chemical composition and microstructure of recycled aluminum metal from bicycle frames produced through sand mold casting are also evaluated. Three types of risers are bentonite, water glass, and furan resin. The results indicate that mold with two gating system has a low porosity as casting defects. The cast-bike frame produced using furan resin reaches the highest hardness value of 46 HRB compared to water glass and bentonite as the binder of sand-molds. The impact test observes 3.9 J carried out by the ASTM E23 sample at room temperature.


Sign in / Sign up

Export Citation Format

Share Document