scholarly journals Mechanical Stress Affects Circadian Rhythm in Skeletal Muscle (C2C12 Myoblasts) by Reducing Per/Cry Gene Expression and Increasing Bmal1 Gene Expression

2021 ◽  
Vol 27 ◽  
Author(s):  
Mengjia Wang ◽  
Da Yu ◽  
Lichun Zheng ◽  
Bing Hong ◽  
Houxuan Li ◽  
...  
Genes ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 64 ◽  
Author(s):  
Jing Zhang ◽  
Xin Xu ◽  
Yan Liu ◽  
Lin Zhang ◽  
Jack Odle ◽  
...  

This study was conducted to elucidate the biological effects of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on cell proliferation, differentiation and gene expression in C2C12 myoblasts. C2C12 were treated with various concentrations of EPA or DHA under proliferation and differentiation conditions. Cell viability was analyzed using cell counting kit-8 assays (CCK-8). The Edu assays were performed to analyze cell proliferation. To analyze cell differentiation, the expressions of myogenic marker genes were determined at the transcriptional and translational levels by qRT-PCR, immunoblotting and immunofluorescence. Global gene expression patterns were characterized using RNA-sequencing. Phosphorylation levels of ERK and Akt were examined by immunoblotting. Cell viability and proliferation was significantly inhibited after incubation with EPA (50 and 100 μM) or DHA (100 μM). Both EPA and DHA suppressed C2C12 myoblasts differentiation. RNA-sequencing analysis revealed that some muscle-related genes were significantly downregulated following EPA or DHA (50 μM) treatment, including insulin-like growth factor 2 (IGF-2), troponin T3 (Tnnt3), myoglobin (Mb), myosin light chain phosphorylatable fast skeletal muscle (Mylpf) and myosin heavy polypeptide 3 (Myh3). IGF-2 was crucial for the growth and differentiation of skeletal muscle and could activate the PI3K/Akt and the MAPK/ERK cascade. We found that EPA and DHA (50 μM) decreased the phosphorylation levels of ERK1/2 and Akt in C2C12 myoblasts. Thus, this study suggested that EPA and DHA exerted an inhibitory effect on myoblast proliferation and differentiation and downregulated muscle-related genes expression.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Daniil Popov ◽  
Pavel Makhnovskii ◽  
Evgeny Lysenko ◽  
Olga Vinogradova

Objective Variety of processes including circadian rhythm and systemic factors affect expression of many genes in skeletal muscle during a day. Therefore, post-exercise gene expression depends on many factors: contractile activity per seas well as circadian rhythm, nerve activity, concentration of different substances in blood, feeding and fasting. In our study, we investigated specific for contractile activity changes in the transcriptome in untrained and trained (after an aerobic training programme) human skeletal muscle. The second goal was to examine effect of aerobic training on gene expression in muscle in basal state. Methods Seven untrained males performed the one-legged knee extension exercise (for 60 min) with the same relative intensity before and after a 2 month aerobic training programme (1 h/day, 5/week). Biopsy samples were taken at rest (basal state, 48 h after the previous exercise), 1 and 4 h after one-legged exercise from m. vastus lateralisof either leg. This approach allowed us to evaluate specific changes in the transcriptome associated with contractile activity. RNA­sequencing (84 samples in total; ~42 million reads/sample) was performed by HiSeq 2500 (Illumina). Results Two months aerobic training increased the aerobic capacity of the knee-extensor muscles (power at anaerobic threshold in incremental one-legged and cycling tests), the maximum rate of ADP-stimulated mitochondrial respiration in permeabilized muscle fibres and amounts of oxidative phosphorylation proteins. After one-legged exercise, expression of many genes was changed in exercised muscle (~1500) as well as in non-exercised muscle (~400). Pronounced changes in gene expression in non-exercised muscle may be associated with many factors, including circadian rhythm (result of GO analysis). To examine transcriptome changes specific for contractile activity, the difference in gene expression between legs was examined. In untrained muscle, one-legged exercise changed expression of ~1200 genes specific for contractile activity at each time point. Despite the same relative intensity of one-legged exercise, transcriptomic response in trained muscle was markedly lower (~300 genes) compare to untrained. We observed a strong overlap between transcriptomic responses (~250 genes) and particularly between enriched transcription factor binding sites in promoters of these genes in untrained and trained muscles. These sets of genes and transcription factors play the key role in adaptation of muscle to contractile activity independently on the level of muscular fitness. Surprisingly, 2 months aerobic training changed the expression of more than 1500 genes in basal state. Noteworthy, these genes demonstrated a small overlap (~200 genes) with genes related to specific response to acute exercise. Moreover, these genes were associated with significantly different biological processes than genes related to specific response to acute exercise. Conclusions Specific for contractile activity changes in the transcriptome in untrained and trained human skeletal muscle were revealed for the first time. After 2 month aerobic training, the specific transcriptome response to acute exercise become much less pronounced. A computational approach reveals common transcription factors important for adaptation of both untrained and trained muscle. We found out that adaptation of muscle to aerobic training associates not only with the transitory changes in gene expression after each exercise, but also with the marked changes in transcriptome in basal state. This work was supported by the Russian Science Foundation (14­15­00768).


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Akhil Velluva ◽  
Maximillian Radtke ◽  
Susanne Horn ◽  
Bernt Popp ◽  
Konrad Platzer ◽  
...  

Abstract Background RNA-seq emerges as a valuable method for clinical genetics. The transcriptome is “dynamic” and tissue-specific, but typically the probed tissues to analyze (TA) are different from the tissue of interest (TI) based on pathophysiology. Results We developed Phenotype-Tissue Expression and Exploration (PTEE), a tool to facilitate the decision about the most suitable TA for RNA-seq. We integrated phenotype-annotated genes, used 54 tissues from GTEx to perform correlation analyses and identify expressed genes and transcripts between TAs and TIs. We identified skeletal muscle as the most appropriate TA to inquire for cardiac arrhythmia genes and skin as a good proxy to study neurodevelopmental disorders. We also explored RNA-seq limitations and show that on-off switching of gene expression during ontogenesis or circadian rhythm can cause blind spots for RNA-seq-based analyses. Conclusions PTEE aids the identification of tissues suitable for RNA-seq for a given pathology to increase the success rate of diagnosis and gene discovery. PTEE is freely available at https://bioinf.eva.mpg.de/PTEE/


Diabetes ◽  
1992 ◽  
Vol 41 (4) ◽  
pp. 465-475 ◽  
Author(s):  
W. T. Garvey ◽  
L. Maianu ◽  
J. A. Hancock ◽  
A. M. Golichowski ◽  
A. Baron

Diabetes ◽  
1997 ◽  
Vol 46 (7) ◽  
pp. 1230-1234 ◽  
Author(s):  
K. S. Park ◽  
T. P. Ciaraldi ◽  
L. Abrams-Carter ◽  
S. Mudaliar ◽  
S. E. Nikoulina ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Peng Yu ◽  
Baoli Zhang ◽  
Ming Liu ◽  
Ying Yu ◽  
Ji Zhao ◽  
...  

Background. Mechanical stress-induced cardiac remodeling that results in heart failure is characterized by transcriptional reprogramming of gene expression. However, a systematic study of genomic changes involved in this process has not been performed to date. To investigate the genomic changes and underlying mechanism of cardiac remodeling, we collected and analyzed DNA microarray data for murine transverse aortic constriction (TAC) and human aortic stenosis (AS) from the Gene Expression Omnibus database and the European Bioinformatics Institute. Methods and Results. The differential expression genes (DEGs) across the datasets were merged. The Venn diagrams showed that the number of intersections for early and late cardiac remodeling was 74 and 16, respectively. Gene ontology and protein–protein interaction network analysis showed that metabolic changes, cell differentiation and growth, cell cycling, and collagen fibril organization accounted for a great portion of the DEGs in the TAC model, while in AS patients’ immune system signaling and cytokine signaling displayed the most significant changes. The intersections between the TAC model and AS patients were few. Nevertheless, the DEGs of the two species shared some common regulatory transcription factors (TFs), including SP1, CEBPB, PPARG, and NFKB1, when the heart was challenged by applied mechanical stress. Conclusions. This study unravels the complex transcriptome profiles of the heart tissues and highlighting the candidate genes involved in cardiac remodeling induced by mechanical stress may usher in a new era of precision diagnostics and treatment in patients with cardiac remodeling.


2021 ◽  
Vol 49 (2) ◽  
pp. 332-339
Author(s):  
Hideyuki Shirasawa ◽  
Noboru Matsumura ◽  
Masaki Yoda ◽  
Kazumasa Okubo ◽  
Masayuki Shimoda ◽  
...  

Background: The infiltration of fat tissue into skeletal muscle, a condition referred to as muscle fatty infiltration or fatty degeneration, is regarded as an irreversible event that significantly compromises the motor function of skeletal muscle. Purpose: To investigate the effect of retinoic acid receptor (RAR) agonists in suppressing the adipogenic differentiation of fibroadipogenic progenitors (FAPs) in vitro and fatty infiltration after rotator cuff tear in mice. Study Design: Controlled laboratory study. Methods: FAPs isolated from mouse skeletal muscle were cultured in adipogenic differentiation medium in the presence or absence of an RAR agonist. At the end of cell culture, adipogenic differentiation was evaluated by gene expression analysis and oil red O staining. A mouse model of fatty infiltration—which includes the resection of the rotator cuff, removal of the humeral head, and denervation the supraspinatus muscle—was used to induce fatty infiltration in the supraspinatus muscle. The mice were orally or intramuscularly administered with an RAR agonist after the surgery. Muscle fatty infiltration was evaluated by histology and gene expression analysis. Results: RAR agonists effectively inhibited the adipogenic differentiation of FAPs in vitro. Oral and intramuscular administration of RAR agonists suppressed the development of muscle fatty infiltration in the mice after rotator cuff tear. In accordance, we found a significant decrease in the number of intramuscular fat cells and suppressed expression in adipogenic markers. RAR agonists also increased the expression of the transcripts for collagens; however, an accumulation of collagenous tissues was not histologically evident in the present model. Conclusion: Muscle fatty infiltration can be alleviated by RAR agonists through suppressing the adipogenic differentiation of FAPs. The results also suggest that RAR agonists are potential therapeutic agents for treating patients who are at risk of developing muscle fatty infiltration. The consequence of the increased expression of collagen transcripts by RAR agonists needs to be clarified. Clinical Relevance: RAR agonists can be used to prevent the development of muscle fatty infiltration after rotator cuff tear. Nevertheless, further studies are mandatory in a large animal model to examine the safety and efficacy of intramuscular injection of RAR agonists.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Fei Xiong ◽  
Xiangyun Cheng ◽  
Chao Zhang ◽  
Roland Manfred Klar ◽  
Tao He

Abstract Background Reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) remains one of the best-established techniques to assess gene expression patterns. However, appropriate reference gene(s) selection remains a critical and challenging subject in which inappropriate reference gene selction can distort results leading to false interpretations. To date, mixed opinions still exist in how to choose the most optimal reference gene sets in accodrance to the Minimum Information for Publication of Quantitative Real-Time PCR Experiments (MIQE) guideline. Therefore, the purpose of this study was to investigate which schemes were the most feasible for the identification of reference genes in a bone and cartilage bioengineering experimental setting. In this study, rat bone mesenchymal stem cells (rBMSCs), skeletal muscle tissue and adipose tissue were utilized, undergoing either chondrogenic or osteogenic induction, to investigate the optimal reference gene set identification scheme that would subsequently ensure stable and accurate interpretation of gene expression in bone and cartilage bioengineering. Results The stability and pairwise variance of eight candidate reference genes were analyzed using geNorm. The V0.15- vs. Vmin-based normalization scheme in rBMSCs had no significant effect on the eventual normalization of target genes. In terms of the muscle tissue, the results of the correlation of NF values between the V0.15 and Vmin schemes and the variance of target genes expression levels generated by these two schemes showed that different schemes do indeed have a significant effect on the eventual normalization of target genes. Three selection schemes were adopted in terms of the adipose tissue, including the three optimal reference genes (Opt3), V0.20 and Vmin schemes, and the analysis of NF values with eventual normalization of target genes showed that the different selection schemes also have a significant effect on the eventual normalization of target genes. Conclusions Based on these results, the proposed cut-off value of Vn/n + 1 under 0.15, according to the geNorm algorithm, should be considered with caution. For cell only experiments, at least rBMSCs, a Vn/n + 1 under 0.15 is sufficient in RT-qPCR studies. However, when using certain tissue types such as skeletal muscle and adipose tissue the minimum Vn/n + 1 should be used instead as this provides a far superior mode of generating accurate gene expression results. We thus recommended that when the stability and variation of a candidate reference genes in a specific study is unclear the minimum Vn/n + 1 should always be used as this ensures the best and most accurate gene expression value is achieved during RT-qPCR assays.


Sign in / Sign up

Export Citation Format

Share Document