scholarly journals Study on the Process of Wedge High Hardness Layer by Laser Cladding

2016 ◽  
Vol 06 (01) ◽  
pp. 32-38
Author(s):  
聪 李
Keyword(s):  
2016 ◽  
Author(s):  
Yuzhou Li ◽  
Weilong Cong ◽  
Fuda Ning ◽  
Rongxia Huang

Alumina ceramic is a high performance engineering material with excellent properties, including high melting point, high hardness and brittle nature make the alumina ceramic difficult to machine and needing high cost by using conventional manufacturing methods. Coating is an important method for alumina fabrication. The excellent properties of coatings can be used for special surface protection and ceramic parts repairing. Comparing with other coating methods, laser cladding method has many good properties to overcome the drawbacks. The reported investigations on laser cladding provide little information about alumina materials for ceramic coating. In this paper, effects of different input variables of laser cladding of alumina materials for ceramic coating were studied. And this paper for the first time reported the relationship between the properties (including surface roughness, flatness and powder efficiency) and input variables such as laser power, powder feeding rate and laser head moving rate. The obtained results will be helpful to establish efficient and effective processes for ceramics coating.


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Andrea Angelastro ◽  
Sabina L. Campanelli ◽  
Giuseppe Casalino ◽  
Antonio D. Ludovico

As a surface coating technique, laser cladding (LC) has been developed for improving wear, corrosion, and fatigue properties of mechanical components. The main advantage of this process is the capability of introducing hard particles such as SiC, TiC, and WC as reinforcements in the metallic matrix such as Ni-based alloy, Co-based alloy, and Fe-based alloy to form ceramic-metal composite coatings, which have very high hardness and good wear resistance. In this paper, Ni-based alloy (Colmonoy 227-F) and Tungsten Carbides/Cobalt/Chromium (WC/Co/Cr) composite coatings were fabricated by the multilayer laser cladding technique (MLC). An optimization procedure was implemented to obtain the combination of process parameters that minimizes the porosity and produces good adhesion to a stainless steel substrate. The optimization procedure was worked out with a mathematical model that was supported by an experimental analysis, which studied the shape of the clad track generated by melting coaxially fed powders with a laser. Microstructural and microhardness analysis completed the set of test performed on the coatings.


Optik ◽  
2016 ◽  
Vol 127 (11) ◽  
pp. 4596-4600 ◽  
Author(s):  
Meiyan Li ◽  
Bin Han ◽  
Yong Wang ◽  
Lixin Song ◽  
Lanyang Guo

Metals ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 190 ◽  
Author(s):  
Aleksander Lisiecki ◽  
Dawid Ślizak

The purpose of this study was to demonstrate the novel technique of laser deposition of Fe-based powder under cryogenic conditions provided by a liquid nitrogen bath. Comparative clad layers were produced by conventional laser cladding at free cooling conditions in ambient air and by the developed process combining laser cladding and laser gas nitriding (hybrid) under cryogenic conditions. The influence of process parameters and cooling conditions on the geometry, microstructure, and hardness profiles of the clad layers was determined. The optical microscopy (OM), scanning electron microscopy (SEM), energy-dispersive spectrometer (EDS), and XRD test methods were used to determine the microstructure and phase composition. The results indicate that the proposed technique of forced cooling the substrate in a nitrogen bath during the laser deposition of Fe-based powder is advantageous because it provides favorable geometry of the clad, low dilution, a narrow heat-affected zone, a high hardness and uniform profile on the cross-sections, homogeneity, and refinement of the microstructure. The influence of the forced cooling on microstructure refinement was quantitatively determined by measuring the secondary dendrite arm spacing (SDAS). Additionally, highly dispersed nanometric-sized (200–360 nm) precipitations of complex carbides were identified in interdendritic regions.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 544 ◽  
Author(s):  
Maider Muro ◽  
Josu Leunda ◽  
Garikoitz Artola ◽  
Carlos Soriano

The aim of this work is to evaluate the microstructural evolutions developed by mixing a corrosion-resistant and high-performance material with a high-hardness material in a coating obtained by laser-cladding technology. In this paper, five different mixtures of Inconel 625 alloy and AISI H13 steel powders have been deposited on a plate of 42CrMo4 steel using a 2.2 kW diode pumped Nd:YAG laser. The effect of adding tool steel to a Ni-based superalloy has been analyzed by the characterization of each cladded sample using optical microscopy and scanning electron microscopy (SEM). The precipitates observed in the samples have been analyzed by energy dispersive X-ray spectroscopy (EDS X-ray). SEM micrographs and EDS analysis indicate the existence of Laves phase. It has been observed that the presence of these precipitates is stabilized in a certain range of AISI H13 addition.


2012 ◽  
Vol 430-432 ◽  
pp. 101-105
Author(s):  
Kai Jin Huang ◽  
Hua Rui Jiang ◽  
Xin Lin

To improve the wear property of 00Cr13Ni4Mo hydro turbine blade stainless steel, Ni-based composite coatings were fabricated on 00Cr13Ni4Mo stainless steel by laser cladding using mixed powders of Ni60, WC and TiN. The microstructure of the coatings was characterized by XRD and SEM techniques. The wear resistance of the coatings was evaluated under dry sliding wear condition at room temperature. The results show that the coatings mainly consist of Ni-based solid solution, WC and TiN phases. The coatings exhibit excellent wear resistance due to its high hardness of WC and TiN phases. The main wear mechanisms of the coatings and the 00Cr13Ni4Mo sample are different, the former is abrasive wear and the latter is adhesive wear.


Metals ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 564 ◽  
Author(s):  
Maider Muro ◽  
Garikoitz Artola ◽  
Josu Leunda ◽  
Carlos Soriano ◽  
Carlos Angulo

Most high-hardness tool steels comprising forming dies require expensive finish machining operations to compensate for the dimensional distortion and surface oxidation caused by the die heat treatment. Precipitation-hardening (PH) tool steels allow for soft finish machining followed by an aging treatment without major deformation or oxidation in the die, but exhibit poor wear performance owing to the lack of carbides in their structure. This drawback can be overcome by combining laser cladding technology, austenite retention, and cryogenic treatments. Hence, an alternative die manufacturing route based on laser cladding was explored. The forming surface of a modified chemistry tool steel die was subjected to cladding. The martensite finish (Mf) temperature of the steel was tuned to enhance austenite retention at room temperature. The cladded surface was then machined in a reduced-hardness condition resulting from retained austenite formation. Subsequent deep cryogenic treatment of the die favoured the retained-austenite-to-martensite transformation, thereby increasing the die hardness without major distortion or oxidation. This process combined the advantages of high-carbide-bearing tool steels and PH steels, allowing for a die with hardness exceeding 58 HRC to be finish machined at <52 HRC. Controlling the occurrence of retained austenite represents an effective strategy for achieving new manufacturing scenarios.


2019 ◽  
Vol 814 ◽  
pp. 137-143 ◽  
Author(s):  
Yan Yin ◽  
Yun Wang ◽  
Zhong Rui Tan ◽  
Wei Jie Yu

In this paper, SKD11 steel wire has been deposited on Cr12MoV plate using Nd: YAG pulsed laser for repairing the die surface damage. The effects of laser power, wire feeding speed, scanning speed and surface roughness on clad geometry have been studied with OM and LSCM. hardness distribution of the cladding layer is also obtained by microhardness tester. Experiment results indicate that the surface roughness is important for clad characteristics due to the light trapping effect. With the increases of roughness, the laser absorption ratio can be raised, both the clad depth and the dilution rate increase, the height decreases. The essence of influence mechanism is effective body energy Ev and specific filling rate ω, and can be used as critical process factors. When Ev is 80~100 J/mm3 and ω is 1~3, a flat cladding layer can be obtained with low dilution, less fusion defects and high hardness. Keywords: Cr12MoV, laser cladding with wire, surface roughness, clad geometry, hardness


2013 ◽  
Vol 664 ◽  
pp. 726-730 ◽  
Author(s):  
Kai Jin Huang ◽  
Yu Yue Wang

To improve the wear propery of 00Cr13Ni4Mo hydro turbine blade stainless steel, TiN-based coating was fabricated on 00Cr13Ni4Mo stainless steel by laser cladding using mixed powders of Ni60 and TiN. The microstructure of the coating was characterized by XRD and SEM techniques. The wear behaviour of the coating was also investigated. The wear resistance of the coating was evaluated under dry sliding wear condition at room temperature. The results show that the coating mainly consists of Ni-based solid solution and TiN phases. The coating exhibits excellent wear resistance due to its high hardness of TiN phase. The main wear mechanisms of the coating and the 00Cr13Ni4Mo sample are different, the former is abrasive wear and the latter is adhesive wear.


2016 ◽  
Vol 254 ◽  
pp. 77-82 ◽  
Author(s):  
Alexandru Pascu ◽  
Iosif Hulka ◽  
Mircea Horia Tierean ◽  
Catalin Croitoru ◽  
Elena Manuela Stanciu ◽  
...  

This paper addresses to the characterization of Ni based coatings realized by two different processes e.g. thermal spray coating and laser cladding. For the relevance of the experimental tests, the same base material, AISI 5140 and Metco 15E powder was used. The results highlight the advantages and disadvantages of the both techniques. The cladded layer obtained through laser cladding is pore and crack free, being characterized by a high hardness and a very good adherence to the substrate, while the flame coating presents oxides inclusions, high porosity, lower hardness and minimal dilution with the substrate as resulted from the EDS analyses. In depth characterization of the samples is made using optical and scanning electron microscopy, EDS analysis and microhardness testing.


Sign in / Sign up

Export Citation Format

Share Document