Antimicrobial activity of Commercial essential oils on human pathogens

Author(s):  
B. R. Malathy ◽  
Sweetlin Ajitha P ◽  
Sangeetha K. S ◽  
Swetha Thampy ◽  
Kamala G

Essential oils (EOs) are natural extracts from the seeds, stems, roots, flowers, bark and other parts of the plant prepared by steam distillation. They are complex, volatile, natural compounds formed by aromatic plants as secondary metabolites. They are known for their bactericidal, virucidal, fungicidal, sedative, anti-inflammatory, analgesic, spasmolytic and locally anesthetic properties. They are generally composed of a combination of substances like terpenes, phenolics, aldehydes or alcohols. The complex composition and different mechanisms of action of EOs may be an advantage over other antimicrobials to prevent the development of resistance of pathogenic bacteria. With this background, the aim of this study was to evaluate the antimicrobial activity of five essential oils like basil, lime, rosemary, thyme and canada balsam against 14 microbes. The effects of essential oil on the selected microbes were determined by agar well diffusion method. The zone of inhibition was observed and measured in millimeter. Essential oils which showed inhibitory diameter >15 mm were further tested to determine the minimum inhibitory concentration (MIC). S. aureus, E. coli, S. mutans, S. sanguinis, C. albicans and M. furfur were inhibited by all essential oils. K. pneumoniae, P. aeruginosa and E .faecalis were inhibited only by thyme and not by other essential oils. The MIC values ranged from 50% to 0.10%. The least MIC value of 0.10% was shown by thyme and basil to S. aureus, thyme to E.coli and all essential oils against C. albicans except lime.

Author(s):  
PURIT PATTANAPANIT ◽  
SUNISA MITHONGLANG ◽  
SUNITA MITHONGLANG ◽  
SURACHAI TECHAOEI

Objective: The objective of this study was to evaluate the antimicrobial activity of volatile oils from aromatic plants against pathogenic bacteria.Methods: Thai aromatic plants such as Pogostemon cablin (Blanco) Benth (Patchouli oil), Cymbopogon nardus Rendle (Citronella grass oil), Pelargoniumroseum (Geranium oil), Syzygium aromaticum (L.) Merrill and Perry (clove oil), Cinnamomum spp.(cinnamon oil), and Cymbopogon citratus (DC.) Stapf.(lemongrass oil) were selected. Essential oils were obtained by water distillation and were stored at 4°C until use. Five human pathogenic bacteria wereobtained from Thai traditional Medicine College, Rajamangala University of Technology, Staphylococcus epidermidis, Escherichia coli, Staphylococcusaureus, methicillin-resistant S. aureus (MRSA), and Pseudomonas aeruginosa. The antibacterial activity of volatile oils was determined by disc-diffusionassay. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of each essential oil were determined.Results: Our study showed that 10% of essential oil from Cinnamomum spp. was the most potential against S. aureus, MRSA, and E. coli when assayedby disc-diffusion method with inhibition zones ranging from 37.66±0.57 to 45.33±1.15 mm and from 29.33±0.57 to 36.00±1.00 for lemongrass oilwith MIC and MBC of 1.25%.Conclusion: From this study, it can be concluded that some essential oils have potential antibacterial activity. The present investigation providessupport to the antibacterial properties of essential oils and will be applied to health-care product as aroma antibacterial products.


2020 ◽  
Vol 21 (3) ◽  
pp. 167
Author(s):  
Triana Setyawardani ◽  
Juni Sumarmono ◽  
Heni Risqiati ◽  
Setya Agus Santosa

The study was aimed to investigate the antimicrobial activity of bacterial isolates L.plantarum 3CT7 and 20CT8 from goat colostrum. The antimicrobial activity of cell-free supernatant was tested using a well-diffusion method on several indicators: temperature, time of storage, and pH. Antimicrobial activity was recorded in both isolates at pH 2.0; 4.0; 6.0 and 8.0, temperature at 0, 50 and 100 oC, and in cold storage for 0, 15, 30, 45 and 60 days. L.plantarum 7CT3 and L.plantarum 20CT8  have a bigger zone of inhibition than that of Pseudomonas spp. as compared to other bacteria. Testing the cell-free activity was aimed to investigate the metabolite inhibition by L.plantarum. The isolates were capable of inhibiting all pathogenic bacteria in the experiment (S. thypimurium, E. coli, and S. aureus)  as evidenced from the similar zone of inhibition from 15.83 to 16.06 mm. Isolates (L. plantarum 7CT3 dan 20CT8) exhibit inhibitory properties against S.thypimurium, S. aureus, Pseudomonas spp.. and L. monocytogenes at 0, 50 and 100oC. L.plantarum 7CT3 and L.plantarum 20CT8 exhibit antimicrobial activity during cold storage. Both isolates grown in the range of pH from 2 to 8 could inhibit S. thypimurium, E. coli, S. aureus and Pseudomonas spp.  In general, the two isolates are the potential antimicrobial activity with broad ranges of pH, temperature and storage time.


Author(s):  
Amita Shobha Rao ◽  
Shobha Kl ◽  
Prathibha Md’almeida ◽  
Kiranmai S Rai

  Objective: Infections caused by Gram-negative bacteria are important causes of morbidity and mortality. Extracts of plants and herbs such as Clitorea ternatea are used as diuretic. This work attempts to find out antimicrobial activity of aqueous and alcoholic extract of C. ternatea roots against Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), clinical strains of Klebsiella pneumoniae, and Candida albicans.Methods: The agar well-diffusion method was done using Mueller Hinton agar and Sabouraud’s dextrose agar. The microorganism grown in peptone water was inoculated into culture medium. 4 mm diameter well punched into the agar was filled with 20 μl of aqueous and alcoholic root extracts C. ternatea extracts in various concentrations (100-25 μg/ml). The plates were incubated and antimicrobial activity was evaluated.Results: Aqueous root extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition against E. coli (ATCC 25922) 18 mm, P. aeruginosa (ATCC 27853) 14 mm, multidrug resistant strain of K. pneumoniae 15 mm. Alcoholic extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition of 35 mm against E. coli (ATCC 25922), P. aeruginosa (ATCC 27853) 22 mm, and multidrug resistant strain of K. pneumoniae 28 mm. C. albicanswas resistant to both extract of C. ternatea root. Conclusions: Alcoholic extract of C. ternatea is a better antibacterial agent against multidrug resistant Klebsiella species and other Gram-negative pathogens. Further, studies are required to identify active substances from the alcoholic extracts of C. ternatea for treating infections.


2021 ◽  
Vol 14 (4) ◽  
pp. 1730-1736
Author(s):  
Kalpana. P. R

Chitosan, a cationic biopolymer is a major derivative of chitin. It is biocompatible, non-toxic and environ-friendly material and has broad spectrum antimicrobial activity. However, it is less effective in neutral or basic conditions due to its solubility only in acidic medium. Therefore, chemical modification with suitable groups is necessary to enhance the potency of chitosan. The present study was mainly conducted to explore the effect of structural modifications on antimicrobial potential of chitosan. N-Methyl, N-Ethyl and N-Propyl pyrrole were reacted with N-chloroacyl-6-O-triphenylmethylchitosan prepared by stepwise modification of chitosan to form N-Methyl, N-Ethyl and N-Propyl pyrrole derivatives of chitosan. Structural characterization of these pyrrole derivatives was done by IR, NMR, XRD, DSC and Elemental Analysis. The gram-negative bacterium Escherichia coli, gram-positive bacterium Staphylococcus aureus were selected for antibacterial activity and the fungus C. albicans was selected for antifungal activity by agar diffusion method and MIC method. Antimicrobial activity of the N-Methyl, N-Ethyl and N-Propyl pyrrole derivatives on E. coli, S. aureus and C. albicans showed an inhibitory effect on all the organisms. The potency of inhibition was found to be varied with the substitutions. The maximum activity was shown by N-pyrrolylpropylchitosan against E. coli (zone of inhibition 1.2±0.05cm, MIC 0.15±0.03mg/ml), S. aureus (zone of inhibition 1.4±0.03cm, MIC 0.15±0.01mg/ml), C. albicans (zone of inhibition 0.8±0.03cm, MIC 0.2±0.03mg/ml). The study also confirmed that all the three derivatives exhibited higher inhibition than that of chitosan against E. coli (zone of inhibition 0.7±0.03cm, MIC 0.09±0.02mg/ml), S. aureus (zone of inhibition 0.8±0.03cm, MIC 0.09±0.02mg/ml), C. albicans (zone of inhibition 0.6±0.03cm, MIC 0.09±0.03mg/ml). Results demonstrated that these three N-alkylpyrrole chitosan derivatives exhibited improved potency and hence can have the more applicability as antimicrobials.


Author(s):  
Hacer Aslan Canberi ◽  
Esra Şentürk ◽  
Simge Aktop ◽  
Pınar Şanlıbaba

Essential oils (EOs) are known for its antimicrobial activity against several pathogenic bacteria. The present work evaluated the antimicrobial activity of 15 different EOs on survival of different strains of different Staphyloccocus aureus strains isolated from traditional cheeses by disc diffusion method. The most antimicrobial activity on the strains was found as oil thyme oil (mean zone diameter 23.203 mm). Clove oil and black seed oil had the highest antimicrobial activity after thyme oil with average zone diameters of 13.698 mm and 11.267 mm respectively. Hypericum perforatum L. oil (mean zone 6.209 mm), ginger oil (mean zone 6.250 mm) and garlic oil (mean zone 6.267 mm) were the lowest antimicrobial activity. New studies about antimicrobial effect of EOs in vivo conditions are recommended.


2021 ◽  
Vol 72 (1) ◽  
pp. 2703
Author(s):  
I VAR ◽  
S UZUNLU ◽  
I DEĞIRMENCI

The use of natural food additives is currently a rising trend. In the present study, the aim was to determine the antimicrobial effects of plum, pomegranate, Seville orange and sumac sauces on E. coli O157:H7,E. coli type I,Listeriamonocytogenes, Listeria ivanovii, Salmonella Typhimurium and Staphylococcus aureus. Different concentrations (1%, 10%, 100%, v/v) of the sauces were tested on the studied bacteria in vitro using the agar diffusion and minimal inhibition concentration (MIC) methods. The results showed that the sumac sauce had the highest antimicrobial activity. The Seville orange, plum and pomegranate sauces also exerted antimicrobial activity in descending order. The antimicrobial activity of the fruit sauces was more effective at a concentration of 100% than at 10% and 1%, v/v. The most inhibitory effect was recorded for sumac sauce at a concentration of 100% (v/v) on L.monocytogenesand E. coli O157:H7. The findings of the MIC method aligned with the agar diffusion method. In addition, the in situ(food method) antimicrobial effect of the sauces on the indigenous microflora of chicken breast samples sold in stores was determined. Chicken samples hosting aerobic mesophilic bacteria, coliforms and E. coli were treated for two hours at 4 °C with plum, pomegranate, Seville orange and sumac sauces and were then monitored. The findings revealed that the Seville orange and sumac sauces were the most effective in reducing the indigenous microbial growth on the chicken samples. The plum sauce showed higher antimicrobial activity than pomegranate sauce. The phenolic content and acidity of the samples significantly (P< 0.05) affected the antimicrobial activity both in vitro (agar diffusion and MIC) and in situ (chilled chicken breast). In conclusion, the sumac and Seville orange sauces were found to be the most promising natural antibacterial agents, and their use could be recommended, for example, in catering services to reduce the risk of foodborne illness.


Author(s):  
Chidepudi D S L N Tulasi

Objective: In the present study, the phytochemical constituents of Drosera spatulata, have been evaluated and antimicrobial activity was screened against respiratory tract infectious microbes.Methods: The phytochemicals present in Drosera spatulata by qualitative phytochemical assays and the antimicrobial activity along with MIC, MBC and BIC were determined against S. aureus, Klebsiella pneumonia and S.Pneumonia the causative organisms of pulmonary infections, mainly effects the nasal pharynx, trachea, and lungs as well as Aspergillus niger.Results: Aqueous, ethanol, methanol extracts of thick roots, open flower and hair of Drosera spatulata var bakoensis against this pathogenic bacteria and fungi showed high zone of inhibition which estimated by disc-diffusion method as well as minimum inhibition concentration manifestation by the broth microdilution assay followed MBC and BIC. The values of MIC, MBC and BIC obtained were between 0.3-0.9, 0.36-2.25, 0.12 - 0.37 mg/mL. The results revealed that the plant extracts of Drosera spatulata var bakoensis have high potential even at low concentrations values against bacteria and fungi cultures and this results validated by the presence of high amounts of alkaloids, quinones, anthraquinones, flavonoids in the plant extracts. Conclusion: In the present study, the results showed the presence of high amounts of alkaloids, flavonoids, quninoes, anthraquinones, terpinoids in Drasera spatulata plant.  In the antibacterial and antifungal activity, the ethanol and methanol extracts significantly showed the activity against the tested respiratory disease causing bacteria and antifungal properties with zone of inhibition showed more than aqueous extracts at very low concentrations


2003 ◽  
Vol 9 (2) ◽  
pp. 85-88 ◽  
Author(s):  
G. Özkan ◽  
O. Sağdiç ◽  
M. Özcan

The antimicrobial effect of 11 selected Turkish spice essential oils was investigated against seventeen pathogenic bacteria. The antimicrobial activity of the essential oils of six spices (cumin, fennel, laurel, mint, marjoram, oregano, pickling herb, sage, savory, thyme (black) and thyme) was tested at four concentrations (0.2, 0.4, 1 and 2%) on various microorganisms ( E. aerogenes, E. coli, E. coli O157:H7, K. pneumoniae, P. vulgaris, S. enteritidis, S. gallinarum, S. typhimurium, S. aureus, Y. enterocolitica, A. hydrophila, C. xerosis, M. luteus, M. smegmatis, E. feacalis, P. aeruginosa and P. fluorescens). All preparations showed antibacterial activity against at least one or more bacteria. The inhibitory effect of the essential oils was evaluated through paper disc diffusion method. In general, the essential oils at 1 and 2% levels were effective. The most active essential oils were marjoram, thyme and oregano. According to the results, the studied essential oils potentially might be used as antibacterial agents to prevent the spoilage of food products, although further research is needed.


Author(s):  
Mojisola Abiola Asowata-Ayodele ◽  
Peter Anani Dabesor ◽  
Bolaji Afolabi

Aims: The aim of this study is to investigate the antimicrobial activities of aqueous and ethanolic (EtOH) extracts of orange (C. sinensis Pers.) and lime (C.aurantifolia (Christm.) Swingle) peels on some selected pathogenic bacteria isolated from jollof rice. Study Design: Antimicrobial analysis, phytochemical analysis Place and Duration of Study: Microbiology Laboratory, Department of Biological Sciences, Wesley University Ondo, Ondo State, Nigeria, between June and July 2017. Methodology: Antimicrobial analysis of aqueous and EtOH extracts prepared from orange and lime peels were done by using the agar well diffusion method against the selected pathogenic bacteria. The extracts were screened for anti-nutrients such as alkaloids, tannins, oxalate, phytate and glycosides. Results: The EtOH extracts of orange peel showed a remarkable zone of inhibition against Escherichia coli (23.5 ± 0.1 mm) followed by Staphylococcus aureus (11.4 ± 0.0 mm) and Bacillus cereus (9.8 ± 0.0 mm). Whereas, the aqueous extracts of orange showed no zone of inhibition against the tested pathogenic bacteria. In addition the EtOH peel extract of lime showed maximum zone of inhibition against  S. aureus (15.5 ± 0.0 mm) followed by E. coli (14.3 ± 0.1 mm) and B. cereus (12.1 ± 0.2 mm), whereas its aqueous peel extract showed no zone of inhibition against K. pneumonia, S. aureus, E. coli and B. cereus. Both EtOH extracts of orange and lime peels showed no zone of inhibition against K. pneumonia. Streptomycin, the reference antibiotic, had no zone of inhibition against B. cereus and S. aureus whereas it recorded maximum zone of inhibition against E. coli (24.0 ± 0.0 mm) and K. pneumonia (25.1 ± 0.1 mm). The phytochemical analysis showed presence of oxalate, alkaloids, phytate, tannins and glycoside in the aqueous and EtOH extracts of lime and orange peels. The antimicrobial activities of EtOH extracts of both lime and orange peels demonstrated inhibitory effect against the targeted organisms such as B. cereus, S. aureus and E. coli. Conclusion: The exploration of novel antimicrobial agents from natural resources such as plant like Lime and sweet orange as food preservative is due to the presence of various secondary metabolites.


Author(s):  
Aloysius Aloysius ◽  
Anjurniza Ulfa ◽  
Anggita Kasih Fianti Situmorang ◽  
Harmileni Harmileni ◽  
Edy Fachrial

Lactic acid bacteria (LAB) could be isolated from various fermented food products. One potential source of LAB is traditional fermented food. The aim of the study was to isolate and investigate antimicrobial activity of LAB isolated from traditional Batak food, “naniura”. The LAB isolates were characterized by Gram staining, fermentation type and catalase test. The investigation of antimicrobial activity of LAB against pathogenic bacteria were conducted using disc diffusion method. The results showed that 6 isolates of BAL were successfully isolated namely BN1, BN2, BN3, BN4, BN5 and BN6 had characteristics of Gram positive, rod shaped and catalase negative. All selected isolate have heterofermentation type. Four isolates (BN1, BN2, BN5 and BN6) were able to inhibit S. aureus, E. coli and S. typhi with inhibition zone diameters ranging from 6,9 to 12,3 cm. Based on the result, it was concluded that LAB isolated from naniura has potential as a source of probiotics.


Sign in / Sign up

Export Citation Format

Share Document