scholarly journals RNA-Seq analysis of genes affected by Cyclophilin A/DIAGEOTROPICA (DGT) in tomato root development

F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 1175
Author(s):  
Maria G. Ivanchenko ◽  
Olivia R. Ozguc ◽  
Stephanie R. Bollmann ◽  
Valerie N. Fraser ◽  
Molly Megraw

Cyclophilin A/DIAGEOTROPICA (DGT) has been linked to auxin-regulated development in tomato and appears to affect multiple developmental pathways. Loss of DGT function results in a pleiotropic phenotype that is strongest in the roots, including shortened roots with no lateral branching. Here, we present an RNA-Seq dataset comparing the gene expression profiles of wildtype (‘Ailsa Craig’) and dgt tissues from three spatially separated developmental stages of the tomato root tip, with three replicates for each tissue and genotype. We also identify differentially expressed genes, provide an initial comparison of genes affected in each genotype and tissue, and provide the pipeline used to analyze the data. Further analysis of this dataset can be used to gain insight into the effects of DGT on various root developmental pathways in tomato.

2020 ◽  
Author(s):  
Maria G. Ivanchenko ◽  
Olivia R. Ozguc ◽  
Stephanie R. Bollmann ◽  
Valerie N. Fraser ◽  
Molly Megraw

AbstractCyclophilin A/DIAGEOTROPICA (DGT) has been linked to auxin-regulated development in tomato and appears to affect multiple developmental pathways. Loss of DGT function results in a pleiotropic phenotype that is strongest in the roots, including shortened roots with no lateral branching. Here, we present an RNA-Seq dataset comparing the gene expression profiles of wildtype (‘Ailsa Craig’) and dgt tissues from three spatially separated developmental stages of the tomato root tip, with three replicates for each tissue and genotype. We also identify differentially expressed genes, provide an initial comparison of genes affected in each genotype and tissue, and provide the pipeline used to analyze the data. Further analysis of this dataset can be used to gain insight into the effects of DGT on various root developmental pathways in tomato.


2007 ◽  
Vol 29 (3) ◽  
pp. 267-279 ◽  
Author(s):  
Siriluck Ponsuksili ◽  
Eduard Murani ◽  
Christina Walz ◽  
Manfred Schwerin ◽  
Klaus Wimmers

The liver plays a central role in the regulation of the metabolic status, partitioning of nutrients, and expenditure of energy. To gain insight into hepatic metabolic pathways and key transcripts affecting traits related to body composition, liver expression profiles were compared of pigs of two breeds, the obese German Landrace (DL) and the lean Pietrain (Pi). Porcine oligonucleotide microarray were hybridized with liver cRNAs obtained at peripubertal age (180 days of age) and prenatal stages (35, 63, and 91 days postconception) that represent three developmental stages of liver, i.e., period of differentiation, period of metabolic activity, and period of glycogen accumulation. In terms of the number of genes regulated between DL and Pi, the most striking distinctions were found at peripubertal age with upregulation of key genes of lipid metabolism pathways (FASN, ACSS2, ACACA) in obese DL pigs and upregulation of genes of cell growth and/or maintenance, and protein syntheses, as well as cell proliferation pathways (PPARD, POU1F1, IGF2R), in lean Pi pigs. Moreover, time course analysis of breed-dependent expression profiles revealed breed-typical temporal regulation from prenatal stages to peripubertal age of genes assigned to biological processes involving lipid pathways and cell activity, i.e., breed differences are already initiated during early prenatal development. Information about mRNA expression levels of the two breeds differing in body composition, partitioning and utilization of nutrients and energy reveals functional candidate genes for traits related to obesity and leanness.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Thomas M. Adams ◽  
Tjelvar S. G. Olsson ◽  
Ricardo H. Ramírez-González ◽  
Ruth Bryant ◽  
Rosie Bryson ◽  
...  

Abstract Background Transcriptomics is being increasingly applied to generate new insight into the interactions between plants and their pathogens. For the wheat yellow (stripe) rust pathogen (Puccinia striiformis f. sp. tritici, Pst) RNA-based sequencing (RNA-Seq) has proved particularly valuable, overcoming the barriers associated with its obligate biotrophic nature. This includes the application of RNA-Seq approaches to study Pst and wheat gene expression dynamics over time and the Pst population composition through the use of a novel RNA-Seq based surveillance approach called “field pathogenomics”. As a dual RNA-Seq approach, the field pathogenomics technique also provides gene expression data from the host, giving new insight into host responses. However, this has created a wealth of data for interrogation. Results Here, we used the field pathogenomics approach to generate 538 new RNA-Seq datasets from Pst-infected field wheat samples, doubling the amount of transcriptomics data available for this important pathosystem. We then analysed these datasets alongside 66 RNA-Seq datasets from four Pst infection time-courses and 420 Pst-infected plant field and laboratory samples that were publicly available. A database of gene expression values for Pst and wheat was generated for each of these 1024 RNA-Seq datasets and incorporated into the development of the rust expression browser (http://www.rust-expression.com). This enables for the first time simultaneous ‘point-and-click’ access to gene expression profiles for Pst and its wheat host and represents the largest database of processed RNA-Seq datasets available for any of the three Puccinia wheat rust pathogens. We also demonstrated the utility of the browser through investigation of expression of putative Pst virulence genes over time and examined the host plants response to Pst infection. Conclusions The rust expression browser offers immense value to the wider community, facilitating data sharing and transparency and the underlying database can be continually expanded as more datasets become publicly available.


2018 ◽  
Vol 19 (10) ◽  
pp. 3071 ◽  
Author(s):  
Li Wang ◽  
Chengjiang Ruan ◽  
Lingyue Liu ◽  
Wei Du ◽  
Aomin Bao

Yellow horn (Xanthoceras sorbifolium Bunge) is an endemic oil-rich shrub that has been widely cultivated in northern China for bioactive oil production. However, little is known regarding the molecular mechanisms that contribute to oil content in yellow horn. Herein, we measured the oil contents of high- and low-oil yellow horn embryo tissues at four developmental stages and investigated the global gene expression profiles through RNA-seq. The results found that at 40, 54, 68, and 81 days after anthesis, a total of 762, 664, 599, and 124 genes, respectively, were significantly differentially expressed between the high- and low-oil lines. Gene ontology (GO) enrichment analysis revealed some critical GO terms related to oil accumulation, including acyl-[acyl-carrier-protein] desaturase activity, pyruvate kinase activity, acetyl-CoA carboxylase activity, and seed oil body biogenesis. The identified differentially expressed genes also included several transcription factors, such as, AP2-EREBP family members, B3 domain proteins and C2C2-Dof proteins. Several genes involved in fatty acid (FA) biosynthesis, glycolysis/gluconeogenesis, and pyruvate metabolism were also up-regulated in the high-oil line at different developmental stages. Our findings indicate that the higher oil accumulation in high-oil yellow horn could be mostly driven by increased FA biosynthesis and carbon supply, i.e. a source effect.


2021 ◽  
Vol 22 (17) ◽  
pp. 9349
Author(s):  
Nicole Rachinger ◽  
Stefan Fischer ◽  
Ines Böhme ◽  
Lisa Linck-Paulus ◽  
Silke Kuphal ◽  
...  

Molecular analyses of normal and diseased cells give insight into changes in gene expression and help in understanding the background of pathophysiological processes. Years after cDNA microarrays were established in research, RNA sequencing (RNA-seq) became a key method of quantitatively measuring the transcriptome. In this study, we compared the detection of genes by each of the transcriptome analysis methods: cDNA array, quantitative RT-PCR, and RNA-seq. As expected, we found differences in the gene expression profiles of the aforementioned techniques. Here, we present selected genes that exemplarily demonstrate the observed differences and calculations to reveal that a strong RNA secondary structure, as well as sample preparation, can affect RNA-seq. In summary, this study addresses an important issue with a strong impact on gene expression analysis in general. Therefore, we suggest that these findings need to be considered when dealing with data from transcriptome analyses.


Genes ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 305 ◽  
Author(s):  
Zhou ◽  
Sun ◽  
Dai ◽  
Feng ◽  
Zhang ◽  
...  

Temperature is one of the most important environmental factors affecting flowering in plants. Adonis amurensis, a perennial herbaceous flower that blooms in early spring in northeast China where the temperature can drop to −15 °C, is an ideal model for studying the molecular mechanisms of flowering at extremely low temperatures. This study first investigated global gene expression profiles at different developmental stages of flowering in A. amurensis by RNA-seq transcriptome and iTRAQ proteomics. Finally, 123 transcription factors (TFs) were detected in both the transcriptome and the proteome. Of these, 66 TFs belonging to 14 families may play a key role in multiple signaling pathways of flowering in A. amurensis. The TFs FAR1, PHD, and B3 may be involved in responses to light and temperature, while SCL, SWI/SNF, ARF, and ERF may be involved in the regulation of hormone balance. SPL may regulate the age pathway. Some members of the TCP, ZFP, MYB, WRKY, and bHLH families may be involved in the transcriptional regulation of flowering genes. The MADS-box TFs are the key regulators of flowering in A. amurensis. Our results provide a direction for understanding the molecular mechanisms of flowering in A. amurensis at low temperatures.


Molecules ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 190 ◽  
Author(s):  
Caibi Zhou ◽  
Xin Mei ◽  
Dylan O’Neill Rothenberg ◽  
Zaibo Yang ◽  
Wenting Zhang ◽  
...  

A variant of tea tree (Camellia sinensis (L.)) with purple buds and leaves and pink flowers can be used as a unique ornamental plant. However, the mechanism of flower coloration remains unclear. To elucidate the molecular mechanism of coloration, as well as anthocyanin accumulation in white and pink tea flowers, metabolite profiling and transcriptome sequencing was analyzed in various tea flower developmental stages. Results of metabolomics analysis revealed that three specific anthocyanin substances could be identified, i.e., cyanidin O-syringic acid, petunidin 3-O-glucoside, and pelargonidin 3-O-β-d-glucoside, which only accumulated in pink tea flowers, and were not able to be detected in white flowers. RNA-seq and weighted gene co-expression network analysis revealed eight highly expressed structural genes involved in anthocyanin biosynthetic pathway, and particularly, different expression patterns of flavonol synthase and dihydroflavonol-4-reductase genes were observed. We deduced that the disequilibrium of expression levels in flavonol synthases and dihydroflavonol-4-reductases resulted in different levels of anthocyanin accumulation and coloration in white and pink tea flowers. Results of qRT-PCR performed for 9 key genes suggested that the expression profiles of differentially expressed genes were generally consistent with the results of high-throughput sequencing. These findings provide insight into anthocyanin accumulation and coloration mechanisms during tea flower development, which will contribute to the breeding of pink-flowered and anthocyanin-rich tea cultivars.


2021 ◽  
Vol 22 (12) ◽  
pp. 6556
Author(s):  
Junjun Huang ◽  
Xiaoyu Li ◽  
Xin Chen ◽  
Yaru Guo ◽  
Weihong Liang ◽  
...  

ATP-binding cassette (ABC) transporter proteins are a gene super-family in plants and play vital roles in growth, development, and response to abiotic and biotic stresses. The ABC transporters have been identified in crop plants such as rice and buckwheat, but little is known about them in soybean. Soybean is an important oil crop and is one of the five major crops in the world. In this study, 255 ABC genes that putatively encode ABC transporters were identified from soybean through bioinformatics and then categorized into eight subfamilies, including 7 ABCAs, 52 ABCBs, 48 ABCCs, 5 ABCDs, 1 ABCEs, 10 ABCFs, 111 ABCGs, and 21 ABCIs. Their phylogenetic relationships, gene structure, and gene expression profiles were characterized. Segmental duplication was the main reason for the expansion of the GmABC genes. Ka/Ks analysis suggested that intense purifying selection was accompanied by the evolution of GmABC genes. The genome-wide collinearity of soybean with other species showed that GmABCs were relatively conserved and that collinear ABCs between species may have originated from the same ancestor. Gene expression analysis of GmABCs revealed the distinct expression pattern in different tissues and diverse developmental stages. The candidate genes GmABCB23, GmABCB25, GmABCB48, GmABCB52, GmABCI1, GmABCI5, and GmABCI13 were responsive to Al toxicity. This work on the GmABC gene family provides useful information for future studies on ABC transporters in soybean and potential targets for the cultivation of new germplasm resources of aluminum-tolerant soybean.


2021 ◽  
Author(s):  
Taguchi Y-h. ◽  
Turki Turki

Abstract The integrated analysis of multiple gene expression profiles measured in distinct studies is always problematic. Especially, missing sample matching and missing common labeling between distinct studies prevent the integration of multiple studies in fully data-driven and unsupervised manner. In this study, we propose a strategy enabling the integration of multiple gene expression profiles among multiple independent studies without either labeling or sample matching, using tensor decomposition-based unsupervised feature extraction. As an example, we applied this strategy to Alzheimer’s disease (AD)-related gene expression profiles that lack exact correspondence among samples as well as AD single-cell RNA-seq (scRNA-seq) data. We found that we could select biologically reasonable genes with integrated analysis. Overall, integrated gene expression profiles can function analogously to prior learning and/or transfer learning strategies in other machine learning applications. For scRNA-seq, the proposed approach was able to drastically reduce the required computational memory.


Sign in / Sign up

Export Citation Format

Share Document