scholarly journals Molecular Epidemiological Surveillance of CTX-M-15-producing Klebsiella pneumoniae from the patients of a teaching hospital.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 444
Author(s):  
Muzaheed Muzaheed ◽  
Naveed Sattar Shaikh ◽  
Saeed Sattar Shaikh ◽  
Sadananda Acharya ◽  
Shajiya Sarwar Moosa ◽  
...  

Background  The presence of Extended-spectrum β-lactamase (ESBL) positive bacteria in hospital setting is an aggravating influential factor for hospitalized patients, and its consequences may be hazardous. Therefore, there is a need for rapid detection methods for newly emerging drug-resistant bacteria. This study was aimed at the molecular characterization of ESBL-positive Klebsiella pneumoniae isolates recovered from clinical samples.   Methods  A total of 513 K. pneumoniae isolates were obtained from various clinical samples during June 2019 to May 2020. The collected isolates were investigated for antimicrobial susceptibility (antibiogram), and PCR and DNA sequencing were performed to analyse the ESBL genes.   Results  Among the 513 isolates, as many as 359 (69.9%) were ESBL producers and 87.5% were multi-drug resistant, while none had resistance to imipenem. PCR scored 3% blaTEM, 3% blaSHV, and 60% blaCTX-M-15 genes for the tested isolates.   Conclusion  The study showed that CTX-M-15 was the major prevalent ESBL type among the isolates. Additionally, all the isolates were susceptible to carbapenems. Screening and detection of ESBL tests are necessary among all isolates from the enterobacteriaceae family in routine microbiology laboratory to prevent associated nosocomial infections. A larger study is essential to understand molecular epidemiology of ESBL producing organisms to minimize morbidities due to these multidrug resistant organisms.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 444
Author(s):  
Muzaheed Muzaheed ◽  
Naveed Sattar Shaikh ◽  
Saeed Sattar Shaikh ◽  
Sadananda Acharya ◽  
Shajiya Sarwar Moosa ◽  
...  

Background  The presence of Extended-spectrum β-lactamase (ESBL) positive bacteria in hospital setting is an aggravating influential factor for hospitalized patients, and its consequences may be hazardous. Therefore, there is a need for rapid detection methods for newly emerging drug-resistant bacteria. This study was aimed at the molecular characterization of ESBL-positive Klebsiella pneumoniae isolates recovered from clinical samples.   Methods  A total of 513 K. pneumoniae isolates were obtained from various clinical samples during June 2019 to May 2020. The collected isolates were investigated for antimicrobial susceptibility (antibiogram), and PCR and DNA sequencing were performed to analyse the ESBL genes.   Results  Among the 513 isolates, as many as 359 (69.9%) were ESBL producers and 87.5% were multi-drug resistant, while none had resistance to imipenem. PCR scored 3% blaTEM, 3% blaSHV, and 60% blaCTX-M-15 genes for the tested isolates.   Conclusion  The study showed that CTX-M-15 was the major prevalent ESBL type among the isolates. Additionally, all the isolates were susceptible to carbapenems. Screening and detection of ESBL tests are necessary among all isolates from the enterobacteriaceae family in routine microbiology laboratory to prevent associated nosocomial infections. A larger study is essential to understand molecular epidemiology of ESBL producing organisms to minimize morbidities due to these multidrug resistant organisms.


F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 444
Author(s):  
Muzaheed Muzaheed ◽  
Naveed Sattar Shaikh ◽  
Saeed Sattar Shaikh ◽  
Sadananda Acharya ◽  
Shajiya Sarwar Moosa ◽  
...  

Background  The presence of Extended-spectrum β-lactamase positive bacteria in hospital setting is an aggravating influential factor for hospitalized patients, and its consequences may be hazardous. Therefore, there is a need for rapid detection methods for newly emerging drug-resistant bacteria. This study was aimed at the molecular characterization of Extended-spectrum β-lactamase -positive  Klebsiella pneumoniae isolates recovered from the patients of a teaching hospital in Sindh, Pakistan.   Methods  A total of 513  K. pneumoniae isolates were obtained from various clinical samples during June 2019 to May 2020. The collected isolates were investigated for antimicrobial susceptibility (antibiogram), and PCR and DNA sequencing were performed to analyse the ESBL genes.   Results  Among the 513 isolates, as many as 359 (69.9%) were Extended-spectrum β-lactamase producers and 87.5% were multi-drug resistant, while none had resistance to imipenem. PCR scored 3% blaTEM, 3% blaSHV, and 60% blaCTX-M-15 genes for the tested isolates.   Conclusion  The study showed that CTX-M-15 was the major prevalent Extended-spectrum β-lactamase type among the isolates. Additionally, all the isolates were susceptible to carbapenems. Screening and detection of Extended-spectrum β-lactamase tests are necessary among all isolates from the enterobacteriaceae family in routine microbiology laboratory to prevent associated nosocomial infections. A larger study is essential to understand molecular epidemiology of Extended-spectrum β-lactamase producing organisms to minimize morbidities due to these multidrug resistant organisms.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244673
Author(s):  
Julalak C. Ontong ◽  
Nwabor F. Ozioma ◽  
Supayang P. Voravuthikunchai ◽  
Sarunyou Chusri

Multidrug resistant Enterobacterales have become a serious global health problem, with extended hospital stay and increased mortality. Antibiotic monotherapy has been reported ineffective against most drug resistant bacteria including Klebsiella pneumoniae, thus encouraging the use of multidrug therapies as an alternative antibacterial strategy. The present works assessed the antibacterial activity of colistin against K. pneumoniae isolates. Resistant isolates were tested against 16 conventional antibiotics alone and in combination with colistin. The results revealed that all colistin resistant isolates demonstrated multidrug resistance against the tested antibiotics except amikacin. At sub-inhibitory concentrations, combinations of colistin with amikacin, or fosfomycin showed synergism against 72.72% (8 of 11 isolates). Colistin with either of gentamicin, meropenem, cefoperazone, cefotaxime, ceftazidime, moxifloxacin, minocycline, or piperacillin exhibited synergism against 81.82% (9 of 11 isolates). Combinations of colistin with either of tobramycin or ciprofloxacin showed synergism against 45.45% (5 in 11 isolates), while combinations of colistin with imipenem or ceftolozane and tazobactam displayed 36.36% (4 of 11 isolates) and 63.64% (7 of 11 isolates) synergism. In addition, combinations of colistin with levofloxacin was synergistic against 90.91% (10 of 11 isolates). The results revealed that combinations of colistin with other antibiotics could effectively inhibit colistin resistant isolates of K. pneumoniae, and thus could be further explore for the treatment of multidrug resistant pathogens.


2017 ◽  
Vol 5 (19) ◽  
Author(s):  
Shaozhen Xing ◽  
Xiangchun Pan ◽  
Qiang Sun ◽  
Guangqian Pei ◽  
Xiaoping An ◽  
...  

ABSTRACT Klebsiella pneumoniae is the most common clinically important opportunistic bacterial pathogen and its infection is often iatrogenic. Its drug resistance poses a grave threat to public health. The genomic data reported here comprise an important resource for research on phage therapy in the control of drug-resistant bacteria.


2019 ◽  
Vol 35 (1) ◽  
pp. 61-66
Author(s):  
Sunjukta Ahsan ◽  
Rayhan Mahmud ◽  
Kajal Ahsan ◽  
Shamima Begum

Infections due to Gram-negative bacteria are common affairs in cancer patients during aggressive therapy. The present study characterizedmulti-drug resistant bacteria (MDR) isolated from cancer aspirates collected from patients admitted to the National Cancer Hospital in Dhaka, Bangladesh. A total of 210 aspirate samples were collected from cancer patients. Out of 210 samples Acinetobacter spp.led the list of isolates (8.89%, n=45). Of these species, 50% exhibited resistance to Amoxycillin and Nitrofurantoin, each, 25% exhibited resistant to Cefotaxime, Azithromycin, Ciprofloxacin, Clindamycin, and Sulfamethoxazole. A total of 33.33% of the Bordetella spp.which accounted 6.67%of the total isolates exhibited resistance to Cefotaxime. All oftheLegionellapneumophila,comprising 4.4%of the isolated species, wereresistant to Cefotaxime, Azithromycin, and Clindamycin.In contrast, 50% were resistant to Cefotaxime, Azithromycin, and Ceftriaxone. Of the Escherichia coli(4.4%, n=45) isolated,50% exhibited resistance to Cefotaxime, Clindamycin, Ceftriaxone, Amoxycillinand Sulfamethoxazole.The only isolate of Klebsiella sp. was demonstrated to be an ESBL producer. The isolation of multidrug resistant bacteria from cancer patients is of particular concern in Bangladesh where cancer and drug resistance are both common phenomena but treatment facilities are poor. To our knowledge this is the first report of the isolation of drug resistant bacteria from cancer patients from Dhaka city. Bangladesh J Microbiol, Volume 35 Number 1 June 2018, pp 61-66


2019 ◽  
Vol 5 (Supplement_1) ◽  
Author(s):  
Eleonora Cella ◽  
Davide Leoni ◽  
Walter Mirandola ◽  
Carla Fontana ◽  
Loredana Sarmati ◽  
...  

Abstract Bloodstream infection (BSI) caused by carbapenemase-producing Enterobacteriaceae (CPE) is a major public health concern, particularly in the hospital setting. The rapid detection of resistance patterns is of paramount importance for establishing the proper antibiotic regime. In addition, in countries where CPE are endemic, it is also important to evaluate genetic relationship among the isolates in order to trace pathogen circulation and to improve the infection control programs. This study is an application of a rapid blood culture (BC) workflow consisting of fast reporting of Gram stain results, rapid pathogen identification (using MALDI TOF technology), and a molecular assay for the detection of the major genes conferring resistance, all of them performed directly from positive BCs. The application of phylogenetic and phylodynamic analyses to bacterial whole-genome sequencing (WGS) data have become essential in the epidemiological surveillance of multidrug-resistant nosocomial pathogens. We analyzed 40 strains of Klebsiella pneumoniae subsp. pneumoniae (KP) carrying blaKPC (KP-KPC), randomly selected among 147 CPE identified from BCs collected from consecutive patients from 2013 to 2016. The number of BSIs-related CPE were 23, 31, 43, and 50 in 2013, 2014, 2015, and 2016, respectively. Among 147 CPE isolates, 143 were KP and four were Escherichia coli (EC). The gene blaKPC was detected in 117 strains of KP and in four strains of EC. Other carbapenemase genes, such as blaVIM and blaOXA-48, were detected in four and nine different isolates of KP, respectively. Moreover, 13 KP strains carried two resistance genes: twelve vehicled blaKPC plus blaVIM and one blaKPC plus blaOXA-48. Phylogenetic analysis of bacterial WGS data was used to investigate the evolution and spatial dispersion of KP in support of hospital infection control. The maximum likelihood tree showed two main clades statistically supported, with statistical support for several subclusters within as well. The minimum spanning tree showed mixing between sequences from different years and wards with only few specific groups. Bayesian analyses are ongoing, as the aid of Bayesian genomic epidemiology in combination with active microbial surveillance is highly informative regarding the development of effective infection prevention in healthcare settings or constant strain reintroduction.


2017 ◽  
Vol 5 (3) ◽  
pp. 302-308 ◽  
Author(s):  
K. Natarajan ◽  
R. Subashkumar

Occurrence and incidence of drug resistant bacteria are becoming very high and common with overuse of antibiotics. This study focused on the isolation of drug resistant strains from the clinical and environmental sample that produce extended spectrum β-lactamase (ESBL) and identification of TEM-1 genes in the plasmid and genomic DNA. 45 Clinical samples from the hospital and 7 environmental samples from the polluted water sources were collected. Among the collected samples, E. coli showed a higher incidence (36.1 %) followed by Klebsiella sp., Staphylococcus sp., Streptococcus sp., Pseudomonas sp., Proteus sp., and Salmonella sp. Antibiotic susceptibility of the isolates were investigated against 25 commercially available antibiotics. All the isolated strains showed MAR index value of more than 0.2. Among the 36 isolates, 7 Gram negative isolates (19.4 %) showed positive results for ESBL production in Double disk synergy test. The plasmid and genomic DNA were isolated and analyzed using PCR with specific primers for the presence of the TEM-1 gene (716 bp). A selected PCR products of the TEM-1 gene was sequenced and analyzed using BLAST.Int. J. Appl. Sci. Biotechnol. Vol 5(3): 302-308


Sign in / Sign up

Export Citation Format

Share Document