scholarly journals THE MATHEMATICAL MODEL OF HYDRAULIC SYSTEM OF BOOM MANIPULATOR

2015 ◽  
Vol 0 (12.1) ◽  
pp. 479
Author(s):  
Aleksandr Ivanovich Pavlov ◽  
Dmitriy Valerevich Kojin ◽  
Pavel Yurevich Loschenov
2013 ◽  
Vol 291-294 ◽  
pp. 1934-1939
Author(s):  
Jian Jun Peng ◽  
Yan Jun Liu ◽  
Yu Li ◽  
Ji Bin Liu

This thesis put forward a hydraulic wave simulation system based on valve-controlled cylinder hydraulic system, which simulated wave movement on the land. The mathematical model of valve-controlled symmetric cylinder was deduced and the mathematical models of servo valve, displacement sensor and servo amplifier were established according to the schematic diagram of the hydraulic system designed, on the basis of which the mathematical model of hydraulic wave simulation system was obtained. Then the stability of the system was analyzed. The results indicated that the system was reliable.


Author(s):  
Mauri´cio Baldi ◽  
Pable Siqueira Meirelles

This study proposes a robust and cheap hydropneumatic suspension system for agricultural trailers used to spread crop protection. This kind of vehicle has a high dynamic load factor that increases the axles loads when it is in use and require a height control to assure the same spraying efficiency keeping constant the distance between the spray nozzles and the crop. As the tractor has its own hydraulic system, the hydropneumatic suspension conception take in account that height control will be done by the hydraulic fluid, being the mass of gas kept constant. A mathematical model of the hydropneumatic spring stiffness behavior was developed, as well as a methodology to define the suspension parameters. Experimental validation of the mathematical model was carried out through the use of a real agricultural trailer, equipped with a hydropneumatic suspension projected using the procedure presented, and tested in a hydropuls® road simulator.


2014 ◽  
Vol 630 ◽  
pp. 85-90 ◽  
Author(s):  
Adam Bureček ◽  
Lumír Hružík ◽  
Martin Vašina

This article is aimed at mathematical simulation and experimental measurement of dynamics of liquid and pipe wall during hydraulic shock. Liquid compressibility and hydraulic line elasticity are taken into account in this case. The mathematical model is created using Matlab SimHydraulics software. The long pipe is simulated by means of segmented pipe. Experimental measurement is performed on a hydraulic system, which consists of flow-controlled aggregate, long pipe and seat valve. The hydraulic shock is caused by step closing of the seat valve that is located at the pipe end. Pressures at the end of the long pipe, oil flow and temperature are experimentally measured.


2013 ◽  
Vol 295-298 ◽  
pp. 1995-2000
Author(s):  
Guang Fu Chen ◽  
Xiao Xian Yao ◽  
Si Bao Li

The traditional valve control hydraulic systems have serious challenges in the harsh environment underground. The mathematical model of this new form of "motor - quantitative pump" controll system was established and simulated by using AMESIM software in this paper. According to the results of comparative analysis of the orifice parameters and the way to input signal, related parameters was determined, which can meet the characteristics of the system.


2013 ◽  
Vol 774-776 ◽  
pp. 295-298
Author(s):  
Zhi Nan Mi ◽  
Long An Chen ◽  
Jia Tao Tang

Displacement control unit is an important part of hydraulic system for screw distributor. By adjusting the angle of swashplate, it can change the flow rate of pump and rotating speed of screw distributor. The rotating speed of screw distributor has influence on quality of road. The mathematical model of displacement control unit is presented. Its dynamical characteristics are analyzed. The mathematical model includes a reset spring gradient. The reset spring gradient is much smaller than the hydraulic spring rate, the effect of the reset spring gradient can be neglected. So an inertial element can be substituted by an integration element.


Author(s):  
Piotr Wos ◽  
Ryszard Dindorf ◽  
Jakub Takosoglu

The article presents the concept of building and controlling a Bricklaying Robotic System (BRS). The research presents the design process and how to control a four-cylinder electro-hydraulic servo drive system. The article presents a mathematical model and optimizes the process of aligning the mobile support platform of the masonry robot. The lifting mechanism was presented and its kinematic analysis performed. The mathematical model of the hydraulic system was described. The control system, designed for the masonry robot lifting platform, includes position errors for a single drive axis and synchronization errors between the axes.


2013 ◽  
Vol 816-817 ◽  
pp. 348-352
Author(s):  
Yue Dong ◽  
Li Li Xu ◽  
Qi Yang ◽  
Chun Zhi Wang ◽  
Yu Zhao ◽  
...  

Hydraulic system has been used very widely in the modern stage system, through the hydraulic system of the stage, we can realize many function of the stage, such as lifting and revolve, and this makes the effect of the performance even better.[1] But the hydraulic stage system is relatively huge, failure is inevitable, and the causes of system failure are varied. In recent years, the casualties caused by the system are abounding. We can set up the mathematical model, to provide theoretical support for the monitoring and control system in the hydraulic system of the stage.


2021 ◽  
Vol 21 (1) ◽  
pp. 55-61
Author(s):  
T. A. Khinikadze ◽  
A. T. Rybak ◽  
P. I. Popikov

Introduction. Currently, Russia has adopted a course towards the creation of intelligent machines and equipment. The same holds for mobile technological machines for road construction and public utilities. Therefore, the design and creation of this type of actuators with a self-adaptation function is a critical task.Materials and Methods. A device equipped with a hydraulic drive with self-adaptation to load and coordination of kinematic and power parameters of the principal motion and the feed movement of the working body of the rock- drilling rig, is presented. To study and design the device based on the mathematical modeling methods of a hydraulic drive and adaptive systems, a mathematical model is proposed. It is developed using the foundations of the theory of volumetric stiffness of hydraulic systems. This enables to accurately describe the impact of the dynamic properties of the hydraulic system (compressibility of the working fluid, elastic properties of pipelines, high-pressure  hoses, hydraulic apparatuses) on the dynamic properties of the system as a whole.Results. The mathematical model for a device with self-adaptation includes submodels of adaptive communication, interrelations of power, kinematic and process parameters of rock drilling, as well as mathematical description of the movement of system elements. The solution to the developed mathematical model was performed in the software environment for dynamic modeling of technical systems SimInTech. As a result, general dependences of the adaptive system on the design parameters of the system and the operating conditions are obtained.Discussion and Conclusion. The mathematical model of the presented device shows the fundamental possibility of implementing the principle of self-adaptation in terms of load under external and internal disturbing actions during operation. The results obtained can be used under designing adaptive systems of other technological equipment, for example, for the implementation of deep drilling in workpieces with variable properties in its depth.


2021 ◽  
Vol 2079 (1) ◽  
pp. 012026
Author(s):  
HongBo Zheng ◽  
MingJun Li ◽  
QingQing Bian

Abstract Taking the ejecting system of hydraulic system of 7200t ceramic brick press as the research object, the basic constitution and working principle of the hydraulic ejecting system are described, and its mathematical model is established and calculated. In order to verify the accuracy of the mathematical model, the experiment was carried out, and the experimental results were compared with the calculated according to the mathematical model. The two results were basically consistent, indicating that the mathematical model is accurate, and providing a theoretical basis for further research on the ceramic brick press.


2011 ◽  
Vol 2-3 ◽  
pp. 18-23
Author(s):  
Kun Tong ◽  
Ni Ke ◽  
Ming Zhe Che ◽  
Jin Сhun Song

Through analyzing the 760mm hydraulic AGC production line of a Shandong factory, the characteristics, compositions and the mathematical model of hydraulic system of the hydraulic AGC are introduced. Based on those the system performance is analyzed on the working conditions by simulations through introducing the PID and fuzzy PID controller. The simulation analysis concluded that the system response time and overshoots with the fuzzy PID controller were better than before, which is in flavor of the production line commissioning and eventually running. The performance of AGC system affects the controlling accuracy of sheet thickness and yield of sheet directly. In order to accommodate the requirement of market and improve the competition of product, a steel plant from Shandong province entrusts relevant department to develop a set of hydraulic system, which is being debugged at present. Our paper mainly introduces the structure and feature of the system. With the mathematical model that accord with the working conditions being founded and PID and fuzzy PID based on the mathematical model being added, We have simulated the system using the software of MATLAB/SIMULINK, which supplies corresponding theoretical basis for the system’s final operation [1].


Sign in / Sign up

Export Citation Format

Share Document