Simulation Analysis of Rotary Steering Pump-Control Hydraulic System

2013 ◽  
Vol 295-298 ◽  
pp. 1995-2000
Author(s):  
Guang Fu Chen ◽  
Xiao Xian Yao ◽  
Si Bao Li

The traditional valve control hydraulic systems have serious challenges in the harsh environment underground. The mathematical model of this new form of "motor - quantitative pump" controll system was established and simulated by using AMESIM software in this paper. According to the results of comparative analysis of the orifice parameters and the way to input signal, related parameters was determined, which can meet the characteristics of the system.

2011 ◽  
Vol 317-319 ◽  
pp. 307-313 ◽  
Author(s):  
Cong Mei Wei ◽  
Jin Yi Lian ◽  
Jing Jie Li

This paper analyzes the mathematical model of load-sensing hydraulic system based on power linkage graph method and builds the simulation model AMESim of the system. The load sensitive hydraulic system is applied in the working device of loader, and the simulation model AMESim with ADAMS is built by combining the dynamics analysis system with ADAMS,. The study of simulation on the dynamics is completed under different working conditions and the results of simulation analysis are given.


2021 ◽  
Vol 13 (3) ◽  
pp. 79-86
Author(s):  
Leonid Kozlov ◽  
◽  
Yurii Buriennikov ◽  
Oana Rusu ◽  
Volodymyr Pyliavets ◽  
...  

Hydraulic systems based on adjustable pumps, proportional electrohydraulic equipment and controllers are used in mobile machines. The authors propose a new scheme of the hydraulic system for mobile machines, which provides the auger drilling operation. A number of studies have shown that a certain ratio should be maintained between the frequency of auger rotation and its feed during operation, where the productivity of soil disruption should not exceed the productivity of transporting loose soil from the drilling zone. Ensuring the required ratio between the speed of the auger rotation and its feed is implemented by a controller that works according to a certain algorithm. A nonlinear mathematical model of the hydraulic system was developed to create the algorithm for controller operation and setting. The equations of the mathematical model are solved in the MATLAB-Simulink environment by the Rosenbrock method. As a result of solving the equations for the mathematical model, the dependences of variables describing the state of the hydraulic system on time are obtained. The values of the controller settings are determined at which the hydraulic system works steadily, the error of flow rate stabilization, the time for pressure adjustment and readjustment does not exceed the allowable values. The algorithm for controlling the auger feed value is formed. This algorithm provides the necessary ratio between the auger feed and speed, as well as reducing the feed rate in the case of soil hardness increases. This creates the conditions for uninterrupted pit drilling at full depth and protection of the hydraulic system from overload.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2313
Author(s):  
Guillermo Romero ◽  
Vicente S. Fuertes-Miquel ◽  
Óscar E. Coronado-Hernández ◽  
Román Ponz-Carcelén ◽  
Francisco Biel-Sanchis

Air pockets generated during emptying operations in pressurized hydraulic systems cause significant pressure drops inside pipes. To avoid these sudden pressure changes, one of the most widely used methods involves the installation of air valves along the pipeline route. These elements allow air exchange between the exterior and the interior of the pipe, which alleviates the pressure drops produced and thus prevents possible breaks or failures in the structure of the installation. This study uses a mathematical model previously validated by the authors in smaller installations to simulate all hydraulic variables involved in emptying processes over time. The purpose of these simulations is the validation of the mathematical model in real large-scale installations, and to do this, the results obtained with the mathematical model are compared with actual measurements made by the partner company. The hydraulic system selected for the study is a pipeline with a nominal diameter of 400 mm and a total length of 1020 m. The results obtained from the mathematical model show great similarity with the experimental measurements, thus validating the model for emptying large pipes.


2018 ◽  
Vol 8 (7) ◽  
pp. 1201 ◽  
Author(s):  
Haigang Ding ◽  
Jiyun Zhao ◽  
Gang Cheng ◽  
Steve Wright ◽  
Yufeng Yao

A new leaking valve-pump parallel control (LVPC) oil hydraulic system is proposed to improve the performance of dynamic response of present variable speed pump control (VSPC) system, which is an oil hydraulic control system with saving energy. In the LVPC, a control valve is operating at leaking status, together with a variable speed pump, to regulate the system flow of hydraulic oil simultaneously. Therefore, the degree of valve control and pump control can be adjusted by regulating the valve-pump weight ratio. The LVPC system design, mathematical model development, system parameter and control performance analysis are carried out systematically followed by an experimental for validation process. Results have shown that after introducing the valve control, the total leakage coefficient increases significantly over a wide range with the operating point and this further increases damping ratios and reduces the velocity stiffness. As the valve-pump weight ratio determines the flow distribution between the valve and the pump and the weight factors of the valve and/or the pump controls determines the response speed of the LVPC system, thus if the weight factors are constrained properly, the LVPC system will eventually have a large synthetic open-loop gain and it will respond faster than the VSPC system. The LVPC will enrich the control schemes of oil hydraulic system and has potential value in application requiring of fast response.


2012 ◽  
Vol 271-272 ◽  
pp. 1073-1076
Author(s):  
Zhen Hua Duan ◽  
Zhang Yong Wu ◽  
Qing Hui Wang ◽  
Xi Wu ◽  
Cheng Zhuo Wen

According to the requirements of hydraulic transmission to two-way cartridge valve, and from the practical point of view a water hydraulic two-way cartridge valve was designed. Then its structure characteristics was introduced and the mathematical model was established. The simulation analysis of the water hydraulic two-way cartridge valve has been carried out through Matlab/Simulink proving that its structure was reasonable and it had good performances.


2014 ◽  
Vol 945-949 ◽  
pp. 1461-1464
Author(s):  
Han Yu Jin ◽  
Xiu Sheng Cheng ◽  
Xiu Feng Song

The working principle of wet clutch was analyzed and the mathematical model was established for torque deliver. Experimental verification and simulation analysis was carried out for the clutch model in the situation of constant pressure engaging process. An efficiency examination of wet clutch implemented on the test rig and provided theory evidence for pressure precisely control.


2013 ◽  
Vol 291-294 ◽  
pp. 1934-1939
Author(s):  
Jian Jun Peng ◽  
Yan Jun Liu ◽  
Yu Li ◽  
Ji Bin Liu

This thesis put forward a hydraulic wave simulation system based on valve-controlled cylinder hydraulic system, which simulated wave movement on the land. The mathematical model of valve-controlled symmetric cylinder was deduced and the mathematical models of servo valve, displacement sensor and servo amplifier were established according to the schematic diagram of the hydraulic system designed, on the basis of which the mathematical model of hydraulic wave simulation system was obtained. Then the stability of the system was analyzed. The results indicated that the system was reliable.


2012 ◽  
Vol 490-495 ◽  
pp. 1441-1445 ◽  
Author(s):  
Jian Zhuo Zhang ◽  
Li Zhe Guan ◽  
Kang Kang Li

A kind of hydraulic exciter based on rotary valve control was studied in this paper, the composition of the exciter and its working principle were introduced, and the mathematical model of the system was established. The characters of the system were simulated using MATLAB. From the results of the simulation, we get the relationship of the amplitude of Vibration oil cylinder between the system’s pressure and the exciting frequency. The results can provide theoretical bases to design the hydraulic exciter.


2010 ◽  
Vol 160-162 ◽  
pp. 1680-1684
Author(s):  
Xing Jun Gao ◽  
Qing Liu ◽  
Ping Zou ◽  
Jian Song ◽  
Ping Li

The fundamental principle of the twist drill conical grinding method was introduced. The mathematical model of the twist drill was established. Mathematical model to establish drill bit is the geometric design, manufacture, cutting analysis and modeling on the basis of the drilling process. According to the twist drill grinding principle, using Pro/E the three-dimensional modeling of the twist drill was completed, and the feature of the conical grinding method was analyzed.


Author(s):  
Mauri´cio Baldi ◽  
Pable Siqueira Meirelles

This study proposes a robust and cheap hydropneumatic suspension system for agricultural trailers used to spread crop protection. This kind of vehicle has a high dynamic load factor that increases the axles loads when it is in use and require a height control to assure the same spraying efficiency keeping constant the distance between the spray nozzles and the crop. As the tractor has its own hydraulic system, the hydropneumatic suspension conception take in account that height control will be done by the hydraulic fluid, being the mass of gas kept constant. A mathematical model of the hydropneumatic spring stiffness behavior was developed, as well as a methodology to define the suspension parameters. Experimental validation of the mathematical model was carried out through the use of a real agricultural trailer, equipped with a hydropneumatic suspension projected using the procedure presented, and tested in a hydropuls® road simulator.


Sign in / Sign up

Export Citation Format

Share Document