scholarly journals Computer support for optimum decisionmaking in engineering plant control based on OLAP methodology

2015 ◽  
Vol 2015 (4) ◽  
pp. 141-147
Author(s):  
Галина Коновалова ◽  
Galina Konovalova

The present day at engineering plants occurs the following problem: an inadequacy of management decisions made to the required state of manufacturing causing high production costs, higher length of the production cycle and irregularity in timing of orders. To solve this problem the author of this work has developed a methodology for the management of differ-ent and dynamic production based on a system approach. The main way for the realization of the system approach lies through the formation of an adequate integrated information system of an engineering plant control. With the aid of the integrated information using the OLAP methodology the procedure of all pro-duction processes is tracked and a complex multidimensional analysis of data is carried out, dynamics, trends, regularities and new knowledge are defined. The OLAP methodology gives convenient highspeed means of access, review and analysis of business information. A user obtains a natural, comprehensible, multi-dimensional data model organizing them as multidimensional cubes. The system multidimensional data analysis and optimum decisionmaking are ensured with a computer. The system developed for the support of management decisionmaking embraces various kinds of activities, planning periods and management profiles. The technical solutions offered are introduced into Bryansk Engineering Plant Co. and have a universal character and can be applied at all engineering plants of the country.

2016 ◽  
Vol 2016 (5) ◽  
pp. 197-202
Author(s):  
Галина Коновалова ◽  
Galina Konovalova

Today there is an inconsistency issue between tak-ing the management decisions and the required production condition at machine-building enterprises, including high production costs, long period of a production cycle and the operational delays. For solving the problem the author of the work has investigated production and management at machine-building enterprise on the basis of system analysis. The approach for coordinating purposes and indicators at the strategic, tactical and operational level of management at machine-building enterprise is offered. The proposed technical solutions are introduced in CJSC CC Bryansk Engineering Plant and universal theu can be applied at all machine-building enterprises of the country.


2020 ◽  
Vol 51 (4) ◽  
Author(s):  
Abdullah & Al-Taye

This study was aimed at assessing marketing efficiency in the main sites of meat production of calf fattening fields in the private sector due to the importance of meat, especially red meat, which has essential nutrient for human body growth and high commodity prices depending on the measurement indicators used to suit the nature of the research conducted in calves fattening production fields in Gogjali region- Nineveh  (2018). The basic source data of the study is obtained from sources on the ongoing ground- marketing questionnaire of three levels, the producer, the wholesaler, the retailer and two fields groups of caste random sample. The first group included (100) fields with imported calves class. The second included (51) fields with local calves class. Whereas, according to the production and marketing costs indicator, the average of marketing efficiency (ME1 ) of marketed meat in both groups of claves fattening fields amounted (92.47, 93.39%) respectively for a kilogram which is a sign of high production costs and, according to the marketing margins indicator, the average of marketing efficiency (ME2 ) of marketed meat in both groups of claves fattening fields amounted (86.89,79.13 %) for per kg which is a sign of high marketing margins. Thus the study concluded a high value of marketing efficiency using the first scale with the fattening period time for both groups while marketing efficiency by using the second scale was characterized by the gradual decline in the imported fattening fields and a gradual rise in the local fattening fields.  The study recommends supporting production inputs (fodder, treatment), unifying markets and limiting the    importation of red meat importation  in order to obtain a good production and currency policy by which the production costs could be reduced to the minimum .


2021 ◽  
Vol 3 (1) ◽  
pp. 19-36
Author(s):  
Tamás Mizik ◽  
Gábor Gyarmati

As Earth’s fossil energy resources are limited, there is a growing need for renewable resources such as biodiesel. That is the reason why the social, economic and environmental impacts of biofuels became an important research topic in the last decade. Depleted stocks of crude oil and the significant level of environmental pollution encourage researchers and professionals to seek and find solutions. The study aims to analyze the economic and sustainability issues of biodiesel production by a systematic literature review. During this process, 53 relevant studies were analyzed out of 13,069 identified articles. Every study agrees that there are several concerns about the first-generation technology; however, further generations cannot be price-competitive at this moment due to the immature technology and high production costs. However, there are promising alternatives, such as wastewater-based microalgae with up to 70% oil content, fat, oils and grease (FOG), when production cost is below 799 USD/gallon, and municipal solid waste-volatile fatty acids technology, where the raw material is free. Proper management of the co-products (mainly glycerol) is essential, especially at the currently low petroleum prices (0.29 USD/L), which can only be handled by the biorefineries. Sustainability is sometimes translated as cost efficiency, but the complex interpretation is becoming more common. Common elements of sustainability are environmental and social, as well as economic, issues.


2020 ◽  
Vol 17 ◽  
pp. 00124
Author(s):  
Elena P. Polikarpova ◽  
Igor E. Mizikovskiy

Modern science and practice does not have a sufficient set of cost management tools, taking into account the duration of the production cycle, characteristic of agricultural activity. The implementation of a cycle-oriented approach to building a model of production costs was based on studying the existing options for classifying production costs, which were supplemented with features from the perspective of managing long production cycles. As a result of the study, a model of production costs was built from the point of view of a cycle-oriented approach, as well as a model of production costs from the standpoint of features of a long production cycle. The model can serve as the basis for the formation of the information space of cost management, control and cost analysis in the economy of agricultural enterprises.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1197 ◽  
Author(s):  
Warren Blunt ◽  
David Levin ◽  
Nazim Cicek

Microbial polyhydroxyalkanoates (PHAs) are promising biodegradable polymers that may alleviate some of the environmental burden of petroleum-derived polymers. The requirements for carbon substrates and energy for bioreactor operations are major factors contributing to the high production costs and environmental impact of PHAs. Improving the process productivity is an important aspect of cost reduction, which has been attempted using a variety of fed-batch, continuous, and semi-continuous bioreactor systems, with variable results. The purpose of this review is to summarize the bioreactor operations targeting high PHA productivity using pure cultures. The highest volumetric PHA productivity was reported more than 20 years ago for poly(3-hydroxybutryate) (PHB) production from sucrose (5.1 g L−1 h−1). In the time since, similar results have not been achieved on a scale of more than 100 L. More recently, a number fed-batch and semi-continuous (cyclic) bioreactor operation strategies have reported reasonably high productivities (1 g L−1 h−1 to 2 g L−1 h−1) under more realistic conditions for pilot or industrial-scale production, including the utilization of lower-cost waste carbon substrates and atmospheric air as the aeration medium, as well as cultivation under non-sterile conditions. Little development has occurred in the area of fully continuously fed bioreactor systems over the last eight years.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Ahmad Nurfiki Alwi ◽  
Arif Rahman Setiaji ◽  
Abdurrohim Kurnia Agung ◽  
Abdul Halim

The number of economic needs is one of the fundamental aspects to support the survival of every individual in an area.  If seen in general, the cost of building the building and residential community still use building materials and installation costs are relatively higher.  With the advancement of technology has found a lightweight brick that has better strength, lighter, faster installation and environmentally friendly, so many people began to switch to using lightweight bricks.  For now the price of lightweight brick is still expensive, but this deficiency is covered with the speed of mounting and light weight so overall lightweight brick usage on certain patterns is very profitable.  The use of cement on lightweight bricks leads to high production costs.  With the above problems we have a breakthrough to replace the cement by using zeozolites containing silica compounds that resemble one of the cement compounds.  In this research, cement replacement with Zeolite is 20%, 40% and 60%.  Before use Zeolite was first activated using Fly Ash ratio of 65% Zeolite: 35% Fly Ash and 50% Zeolite: 50% Fly Ash, also activated using Ca (OH) 2 ratio 65% Zeolite: 35% Ca (OH) 2  And 50% Zeolite: 50% Ca (OH) 2.  Thus, there are 15 compositions including the control composition, each composition will be made up of 10 specimens.  Hypothesis testing using two way anova, tested is the effect of cement change treatment with Zeolite and comparison of Zeolite composition with Fly Ash and Ca (OH) 2 to compressive strength, absorption and cost. Keywords: Zeolite, Cement, compressive strength, Cost


Nanomaterials ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 175
Author(s):  
Priyanka Prakash ◽  
Wing-Hin Lee ◽  
Ching-Yee Loo ◽  
Hau Seung Jeremy Wong ◽  
Thaigarajan Parumasivam

Polyhydroxyalkanoates (PHAs) are natural polymers produced under specific conditions by certain organisms, primarily bacteria, as a source of energy. These up-and-coming bioplastics are an undeniable asset in enhancing the effectiveness of drug delivery systems, which demand characteristics like non-immunogenicity, a sustained and controlled drug release, targeted delivery, as well as a high drug loading capacity. Given their biocompatibility, biodegradability, modifiability, and compatibility with hydrophobic drugs, PHAs often provide a superior alternative to free drug therapy or treatments using other polymeric nanocarriers. The many formulation methods of existing PHA nanocarriers, such as emulsion solvent evaporation, nanoprecipitation, dialysis, and in situ polymerization, are explained in this review. Due to their flexibility that allows for a vessel tailormade to its intended application, PHA nanocarriers have found their place in diverse therapy options like anticancer and anti-infective treatments, which are among the applications of PHA nanocarriers discussed in this article. Despite their many positive attributes, the advancement of PHA nanocarriers to clinical trials of drug delivery applications has been stunted due to the polymers’ natural hydrophobicity, controversial production materials, and high production costs, among others. These challenges are explored in this review, alongside their existing solutions and alternatives.


2016 ◽  
Vol 5 (12) ◽  
pp. 12
Author(s):  
BADAR ALMAMARI

<p>It is widely known that ready-made glazes are hugely expensive, in spite of their widespread availability in Oman. Most students of ceramic art, at various levels of education, depend on foreign materials rather than local materials, which has resulted in high production costs. As an environmentally diverse country, Oman has great potential to take advantage of local crop waste plant waste by using it to make attractive ceramic glazes. Ann experimental study conducted at the ceramic studio in Sultan Qaboos University (SQU) led to the development of some excellent recipes for ceramic glazes using 20% to 30% ash. This study has helped to convert Omani plant waste into textured matt ceramic glazes, which are otherwise expensive to procure for educational and commercial purposes.</p>


2021 ◽  
Vol 17 ◽  
Author(s):  
Ahmed Alahmed ◽  
Emel Ceyhun Sabır

: The electrodes are the basis for building flexible lithium-ion batteries (FLIBs), and many attempts have been made to develop flexible electrodes with high efficiency in terms of electrical conductivity, chemical and mechanical properties. Most studies showed relatively satisfactory results when testing the electrochemical properties of laboratory-produced electrodes, but most of these electrodes could not meet the expected requirements of flexible electrodes in practical applications. Quantitative production faces many problems that must be overcome, such as the gradual decline in electrochemical performance, deformation of the electrode structure, high production costs, and difficulties in the production process itself. In this research, developments in the production of flexible electrodes, especially those that depend on carbon materials and metal nanoparticles, will be discussed and summarized in this research. The electrochemical performance and stability of the produced flexible electrodes will be compared. The factors contributing to the progress in the production of flexible lithium-ion batteries will also be discussed.


Sign in / Sign up

Export Citation Format

Share Document