scholarly journals Association of ambient air pollutant PM2.5 with skin redness features: An urban-rural comparison in Taiwan

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Fu Yu Chan
2021 ◽  
Vol 214 ◽  
pp. 112060
Author(s):  
Wei Dai ◽  
Hao Shi ◽  
Zhiqin Bu ◽  
Yiping Yu ◽  
Zhimin Sun ◽  
...  

Author(s):  
Qiwei Yu ◽  
Liqiang Zhang ◽  
Kun Hou ◽  
Jingwen Li ◽  
Suhong Liu ◽  
...  

Exposure to air pollution has been suggested to be associated with an increased risk of women’s health disorders. However, it remains unknown to what extent changes in ambient air pollution affect gynecological cancer. In our case–control study, the logistic regression model was combined with the restricted cubic spline to examine the association of short-term exposure to air pollution with gynecological cancer events using the clinical data of 35,989 women in Beijing from December 2008 to December 2017. We assessed the women’s exposure to air pollutants using the monitor located nearest to each woman’s residence and working places, adjusting for age, occupation, ambient temperature, and ambient humidity. The adjusted odds ratios (ORs) were examined to evaluate gynecologic cancer risk in six time windows (Phase 1–Phase 6) of women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the highest ORs were found in Phase 4 (240 days). Then, the higher adjusted ORs were found associated with the increased concentrations of each pollutant (PM2.5, CO, O3, and SO2) in Phase 4. For instance, the adjusted OR of gynecological cancer risk for a 1.0-mg m−3 increase in CO exposures was 1.010 (95% CI: 0.881–1.139) below 0.8 mg m−3, 1.032 (95% CI: 0.871–1.194) at 0.8–1.0 mg m−3, 1.059 (95% CI: 0.973–1.145) at 1.0–1.4 mg m−3, and 1.120 (95% CI: 0.993–1.246) above 1.4 mg m−3. The ORs calculated in different air pollution levels accessed us to identify the nonlinear association between women’s exposure to air pollutants (PM2.5, CO, O3, and SO2) and the gynecological cancer risk. This study supports that the gynecologic risks associated with air pollution should be considered in improved public health preventive measures and policymaking to minimize the dangerous effects of air pollution.


Author(s):  
Michelle N. Rosado-Pérez ◽  
Karen Ríos-Soto

Asthma is a respiratory disease that affects the lungs, with a prevalence of 339.4 million people worldwide [G. Marks, N. Pearce, D. Strachan, I. Asher and P. Ellwood, The Global Asthma Report 2018, globalasthmareport.org (2018)]. Many factors contribute to the high prevalence of asthma, but with the rise of the industrial age, air pollutants have become one of the main Ultrafine particles (UFPs), which are a type of air pollutant that can affect asthmatics the most. These UFPs originate primarily from the combustion of motor vehicles [P. Solomon, Ultrafine particles in ambient air. EM: Air and Waste Management Association’s Magazine for Environmental Managers (2012)] and although in certain places some regulations to control their emission have been implemented they might not be enough. In this work, a mathematical model of reaction–diffusion type is constructed to study how UFPs grow and disperse in the environment and in turn how they affect an asthmatic population. Part of our focus is on the existence of traveling wave solutions and their minimum asymptotic speed of pollutant propagation [Formula: see text]. Through the analysis of the model it was possible to identify the necessary threshold conditions to control the pollutant emissions and consequently reduce the asthma episodes in the population. Analytical and numerical results from this work prove how harmful the UFEs are for the asthmatic population and how they can exacerbate their asthma episodes.


2016 ◽  
Vol 310 (11) ◽  
pp. H1423-H1438 ◽  
Author(s):  
Petra Haberzettl ◽  
James P. McCracken ◽  
Aruni Bhatnagar ◽  
Daniel J. Conklin

Exposure to fine particular matter (PM2.5) increases the risk of developing cardiovascular disease and Type 2 diabetes. Because blood vessels are sensitive targets of air pollutant exposure, we examined the effects of concentrated ambient PM2.5 (CAP) on vascular insulin sensitivity and circulating levels of endothelial progenitor cells (EPCs), which reflect cardiovascular health. We found that CAP exposure for 9 days decreased insulin-stimulated Akt phosphorylation in the aorta of mice maintained on control diet. This change was accompanied by the induction of IL-1β and increases in the abundance of cleaved IL-18 and p10 subunit of Casp-1, consistent with the activation of the inflammasome pathway. CAP exposure also suppressed circulating levels of EPCs (Flk-1+/Sca-1+ cells), while enhancing the bone marrow abundance of these cells. Although similar changes in vascular insulin signaling and EPC levels were observed in mice fed high-fat diet, CAP exposure did not exacerbate diet-induced changes in vascular insulin resistance or EPC homeostasis. Treatment with an insulin sensitizer, metformin or rosiglitazone, prevented CAP-induced vascular insulin resistance and NF-κB and inflammasome activation and restored peripheral blood and bone marrow EPC levels. These findings suggest that PM2.5 exposure induces diet-independent vascular insulin resistance and inflammation and prevents EPC mobilization, and that this EPC mobilization defect could be mediated by vascular insulin resistance. Impaired vascular insulin sensitivity may be an important mechanism underlying PM2.5-induced vascular injury, and pharmacological sensitization to insulin action could potentially prevent deficits in vascular repair and mitigate vascular inflammation due to exposure to elevated levels of ambient air pollution. Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/particulate-matter-induced-vascular-insulin-resistance/ .


2018 ◽  
Vol 1 (6) ◽  
pp. 247-257
Author(s):  
Bang Quoc Ho ◽  
Tam Thoai Nguyen ◽  
Khue Hoang Ngoc Vu

Can Tho City is one the 5th largest city in Vietnam, with hight rate of economic growth and densely populated with 1,251,809 people, butsling traffic activities with 566,593 motobikes and 15,105 cars and hundreds of factories. The air in Can Tho city is polluted by dust and ozone. However, Can Tho city currently does not have a study on the simulation air pollution spread, therefore we do not have an overview on the status of air pollution in order to do not have solutions to limit the increase of pollution status of the city. The purpose of this study is to collect air pollutant emissions from other study. After that, TAPOM model is used to simulate the effects of ozone on the surrounding areas and study the ozone regime in Cantho city. The study results showed that the highest ozone concentration for an hour everage is 196 μg/m3. Compare with national technical regulation about ambient air QCVN 5:2013/BTNMT, ozone concentration is approximately at the allowable limit. The study of ozone regime had identified that VOC sensitive areas are Ninh Kieu district and a part in the south of Binh Thuy district, and NOx sensitive areas are the rested areas of Cantho city. The main cause contributing to increased VOC emission in the central area of the city is motorcycles, NOx emissions in the remaining areas of Cantho city are from the rice production factories. Proposals to protect the air quality in Cantho city are suggested.


Author(s):  
Han Cao ◽  
Bingxiao Li ◽  
Tianlun Gu ◽  
Xiaohui Liu ◽  
Kai Meng ◽  
...  

Evidence regarding the effects of environmental factors on COVID-19 transmission is mixed. We aimed to explore the associations of air pollutants and meteorological factors with COVID-19 confirmed cases during the outbreak period throughout China. The number of COVID-19 confirmed cases, air pollutant concentrations, and meteorological factors in China from January 25 to February 29, 2020, (36 days) were extracted from authoritative electronic databases. The associations were estimated for a single-day lag as well as moving averages lag using generalized additive mixed models. Region-specific analyses and meta-analysis were conducted in 5 selected regions from the north to south of China with diverse air pollution levels and weather conditions and sufficient sample size. Nonlinear concentration–response analyses were performed. An increase of each interquartile range in PM2.5, PM10, SO2, NO2, O3, and CO at lag4 corresponded to 1.40 (1.37–1.43), 1.35 (1.32–1.37), 1.01 (1.00–1.02), 1.08 (1.07–1.10), 1.28 (1.27–1.29), and 1.26 (1.24–1.28) ORs of daily new cases, respectively. For 1°C, 1%, and 1 m/s increase in temperature, relative humidity, and wind velocity, the ORs were 0.97 (0.97–0.98), 0.96 (0.96–0.97), and 0.94 (0.92–0.95), respectively. The estimates of PM2.5, PM10, NO2, and all meteorological factors remained significantly after meta-analysis for the five selected regions. The concentration–response relationships showed that higher concentrations of air pollutants and lower meteorological factors were associated with daily new cases increasing. Higher air pollutant concentrations and lower temperature, relative humidity and wind velocity may favor COVID-19 transmission. Controlling ambient air pollution, especially for PM2.5, PM10, NO2, may be an important component of reducing risk of COVID-19 infection. In addition, as winter months are arriving in China, the meteorological factors may play a negative role in prevention. Therefore, it is significant to implement the public health control measures persistently in case another possible pandemic.


Epidemiology ◽  
2019 ◽  
Vol 30 (5) ◽  
pp. 624-632 ◽  
Author(s):  
Matthew J. Strickland ◽  
Ying Lin ◽  
Lyndsey A. Darrow ◽  
Joshua L. Warren ◽  
James A. Mulholland ◽  
...  

Author(s):  
Nathaniel R. Fold ◽  
Mary R. Allison ◽  
Berkley C. Wood ◽  
Pham T. B. Thao ◽  
Sebastien Bonnet ◽  
...  

Multiple studies indicate that PM2.5 is the most deleterious air pollutant for which there are ambient air quality standards. Daily concentrations of PM2.5 in Bangkok, Thailand, continuously exceed the World Health Organization (WHO) and the Thai National Ambient Air Quality Standards (NAAQSs). Bangkok has only recently begun to measure concentrations of PM2.5. To overcome this paucity of data, daily PM2.5/PM10 ratios were generated over the period 2012–2018 to interpolate missing values. Concentration-response coefficients (β values) for PM2.5 versus non-accidental, cardiopulmonary, and lung cancer mortalities were derived from the literature. Values were also estimated and were found to be comparable to those reported in the literature for a Chinese population, but considerably lower than those reported in the literature from the United States. These findings strongly suggest that specific regional β values should be used to accurately quantify the number of premature deaths attributable to PM2.5 in Asian populations. Health burden analysis using the Environmental Benefits Mapping and Analysis Program (BenMAP) showed that PM2.5 concentration in Bangkok contributes to 4240 non-accidental, 1317 cardiopulmonary, and 370 lung cancer mortalities annually. Further analysis showed that the attainment of PM2.5 levels to the NAAQSs and WHO guideline would reduce annual premature mortality in Bangkok by 33%and 75%, respectively.


Sign in / Sign up

Export Citation Format

Share Document