scholarly journals ORGANIC POLLUTION IN THE NE SECTOR OF GUANABARA BAY (SE, BRAZIL) / POLUIÇÃO ORGÂNICA NO SETOR NE DA BAÍA DE GUANABARA (SE, BRASIL)

2018 ◽  
Vol 3 (3) ◽  
pp. 138-154 ◽  
Author(s):  
Maria Virginia Alves Martins ◽  
René Rodrigues ◽  
Egberto Pereira ◽  
Paulo Miranda ◽  
Lazaro Laut ◽  
...  

This study characterizes the quantity and quality of organic matter present in surface sediments of the NE sector of Guanabara Bay (SE, Brazil), based on geochemical and statistical analysis. The geochemical analyses included stable isotopes in sedimentary bulk organic matter (orgδ13C), total organic carbon (TOC), total sulfur (TS) and Rock Eval pyrolysis parameters, such as free hydrocarbons (S1), generating source potential (S2), production index (PI), oxygen and hydrogen indices (OI, HI) and the maturation index of organic matter (Tmax). The analyzed data were statistically treated to find main factors that are influencing the sedimentary composition. The low activity of the bottom currents favors the deposition of fine-grained sediments, rich in organic matter, in most of the studied area. The organic matter present in the sediments is being supplied by local and allochthonous sources and can be considered a good source of type III kerogen, and therefore has the potential to generate gas, if the geological context is adequate. Considering the quantity, type of organic matter and potential of hydrocarbon generation four main groups of stations were identified. Stations in which the sediments: i) encompass a relatively high component of OM sourced mainly from the adjacent continental areas close to the Apa de Guapimirim (less contaminated by oil) and S. Gonçalo (Roncador River) regions; ii) contain some autochthonous contribution, located between the Paquetá and Governador Islands, where biogenic gas seeping should be predicted hereafter; iii) have higher contamination by oil, situated near Mauá and REDUC Oil Refinery, of Duque de Caxias; iv) present intermediate characteristics, located in the remaining study area. ResumoEste estudo efetua a caracterização da quantidade e qualidade da matéria orgânica presente em sedimentos superficiais do setor NE da Baía de Guanabara (SE, Brasil), com base em análises geoquímicas e estatísticas. Os dados geoquímicos incluíram isótopos estáveis em matéria orgânica (ORGδ13C), carbono orgânico total (TOC), enxofre total (TS) e parâmetros de pirólise Rock Eval, como por exemplo, teores se hidrocarbonetos livres (S1), potencial de geração hidrocarbonetos (S2), índice de produção (PI), índices de oxigênio e hidrogênio (OI, HI) e índice de maturação da matéria orgânica (Tmax). Os dados analisados foram tratados estatisticamente a fim de serem identificados os principais fatores que influenciam a composição sedimentar. A fraca atividade das correntes de fundo, favorece a deposição de sedimentos finos ricos em matéria orgânica, na maior parte da área estudada. A matéria orgânica presente nos sedimentos está sendo fornecida por fontes locais e alóctones e pode ser considerada uma boa a excelente fonte de querogênio do tipo III, tendo, pois, potencial para a geração de gás, desde que o contexto geológico seja adequado. Considerando-se a quantidade, o tipo de matéria orgânica e o potencial de geração de hidrocarbonetos podem ser identificados quatro grupos principais de estações. Estações em que os sedimentos: i) possuem teores relativamente elevados de matéria orgânica oriunda principalmente das áreas continentais, localizadas próximo da Apa de Guapimirim (menos contaminadas por petróleo) e S. Gonçalo (Rio Roncador); ii) contêm alguma contribuição autóctone, situadas entre a Ilha de Paquetá e a Ilha do Governador, onde se poderá prever a ocorrência de libertação de gás biogênico num futuro próximo; iii) possuem maior contaminação por petróleo, localizadas próximo de Mauá e da refinaria Reduc, de Duque de Caxias; iv) apresentam características intermédias, situadas na restante área de estudo.

2021 ◽  
Vol 41 (3) ◽  
Author(s):  
R. C. Cordeiro ◽  
D. D. dos Santos ◽  
R. E. Santelli ◽  
A. G. Figueiredo ◽  
L. S. Moreira ◽  
...  

2019 ◽  
Vol 4 (2) ◽  
pp. 159-173 ◽  
Author(s):  
Lazaro Laut ◽  
Maria Virgina Alves Martins ◽  
Pierre Belart ◽  
Maria Lucia Lorini ◽  
Iara Clemente ◽  
...  

Bottom sediment is a natural trap for organic matter and different kinds of pollutants. The accumulation of large amount of organic matter gives rise to the eutrophication of the aquatic ecosystems. The analyses of the quantity and quality of the organic matter (biopolymers) help to determine the trophic status of coastal ecosystems. The Maricá-Guarapina Lagoon System (MGLS) is located in Rio de Janeiro and is composed by four connected lagoons: Maricá, Barra, Padre and Guarapina. It has been suffering impacts due to the intense and uncontrolled property speculation. Based on this problem, this study aimed to characterize the organic matter (OM) amount and quality in sediments and the relation with the impacted areas in this lagoon system. The collected sediment samples were analyzed for geochemical data combined with grain size and physical-chemical environmental parameters of the bottom water. Statistical results evidenced that the sedimentary environment of the MGLS is heterogenous. The organic matter supplied to the MGLS is provided from different sources but the autochthonous contribution (phytoplanktonic productivity and vegetal detritus from the mangrove fringe) prevails. The anthropogenic contribution was more evident in Padre Lagoon, where the sediments had relatively low TOC contents (0.1-0.8%). The MGLS is accumulating mainly aged organic matter. The most impacted zones were found in Guarapina, Barra and Maricá lagoons, in bottoms of fine-grained sediments, with relatively high TOC and labile biopolymeric compounds (proteins, carbohydrates and lipids) contents, which should evolve into an ever-increasing stage of eutrophication. COMPOSTOS ORGÂNICOS USADOS COMO INDICADORES DA QUALIDADE AMBIENTAL SEDIMENTAR DO SISTEMA LAGUNAR MARICÁ-GUARAPINA (SE DO BRASIL)ResumoO sedimento de fundo constitui uma armadilha natural para a matéria orgânica e diferentes tipos de poluentes. O acúmulo de grande quantidade de matéria orgânica dá origem à eutrofização dos ecossistemas aquáticos. Estimativas de quantidade e qualidade da matéria orgânica (biopolímeros) podem ajudar a determinar o estado trófico dos ecossistemas costeiros. O Sistema Lagunar de Maricá-Guarapina (MGLS), localizado no Estado do Rio de Janeiro (SE do Brasil), é composto por quatro lagunas interconectadas: Maricá, Barra, Padre e Guarapina. Este sistema tem sofrido impactos devido à intensa e descontrolada especulação imobiliária. Neste contexto, este estudo teve como objetivo caracterizar a quantidade e qualidade de matéria orgânica (MO) dos sedimentos do MGLS. Foram obtidos dados geoquímicos e confrontados com resultados granulométricos em amostras de sedimentos coletados em 22 estações de amostragem e analisados parâmetros físico-químicos da água. Os resultados estatísticos evidenciaram que o ambiente sedimentar do MGLS é heterogêneo. Este sistema recebe matéria orgânica de diferentes fontes, sendo, porém, prevalecente a contribuição autóctone (produtividade fitoplanctônica e detritos vegetais dos manguezais existentes na região). A contribuição antropogênica de matéria orgânica foi mais evidente na Lagoa do Padre, onde os sedimentos apresentaram teores de COT relativamente baixos (0,1-0,8%). As zonas mais impactadas foram encontradas em fundos de sedimentos finos, com teores relativamente elevados de COT e de compostos biopoliméricos lábeis (proteínas, carboidratos e lipídios), nas lagunas de Guarapina, Barra e Maricá. Os resultados obtidos revelam também que o MGLS está acumulando principalmente matéria orgânica envelhecida e permitem prever que as referidas áreas podem evoluir para um estágio de cada vez maior grau de eutrofização.Palavras-chave: Lagunas Costeiras Tropicais. Biopolímeros. Eutrofização. Dinâmica Sedimentar.


2012 ◽  
Vol 616-618 ◽  
pp. 1042-1047
Author(s):  
Zhong Hong Chen

To investigate hydrocarbon potential of the evaporites, some deep wells such as Haoke-1 well and Fengshen-2 well were intensively cored, tested by TOC, Rock-Eval, and chromatography and mass spectrometry and evaluated using geochemistry of biomarker and hydrocarbon generation. High content of gammacerane and low Pr/Ph was exhibited in the evaporite system compared to the non-evaporite system. Different response of biomarkers parameters for the different sedimentary systems was exhibited, such as C19/(C19+C23) terpanes, C29/(C27+C28+C29) steranes, C24/C23 and C22/C21 tricyclic terpane. The evaporites and mud stones have the capacity to generate and expel hydrocarbons. The tested samples were mostly typeⅠand typeⅡ1 of organic matter, and their original generating capacity can reach 40 mg/g rock and 20 mg/g rock respectively. The efficiency of hydrocarbon expulsion reached 60%, but the distribution of organic matter and its generative potential was highly variable. In general, the mudstones show greater generative potential than the evaporites. High maturity severely reduced the capacity of their rocks to generate and expel petroleum.


2019 ◽  
Vol 11 (1) ◽  
pp. 77-88 ◽  
Author(s):  
Wrya J. Mamaseni ◽  
Srood F Naqshabandi ◽  
Falah Kh. Al-Jaboury

Abstract In this study collected samples of Chia Gara Formation in Atrush, Shaikhan and Sarsang oilfields are used to geochemical characteristics of organic matter in this formation. This determination was based on Rock-Eval pyrolysis and Biomarker analyses. The Chia Gara Formation can be considered as good to excellent source rock; it’s TOC content ranges from 1.14-8.5wt% with an average of 1.85%, 3.91%, and 6.94% in Atush-1, Mangesh-1 and Shaikhan-8 wells respectively. The samples of Chia Gara Formation contain kerogen type II. These properties are considered optimal for oil generation. The low oxygen index (OI) and pristane/phytane (Pr/Ph) ratios (Average 20.73, 0.61 respectively) and high hydrogen index (HI) (average 637.6) indicate that the formation was deposited under anoxic condition. According to regular sterane (C27%, C28%, C29%) and terpanes ratios (C29/C30, C31/C30 hopane), the formation was deposited in marine environment. The average value of the Carbon Preference Index (CPI) is one with Tmax values of more than 430 ºC; these indicate peak oil window for the selected samples. Overall, the 20S/(20S+20R), ββ/(ββ+αα)C29 steranes and 22R/(22R+22S)C32homohopane, with Ts/ (Ts+Tm), and moretane/ hopane ratios point to a mature organic matter and to the ability of the formation to generate oil.


2019 ◽  
Vol 132 (3-4) ◽  
pp. 784-792 ◽  
Author(s):  
Xiaojun Zhu ◽  
Jingong Cai ◽  
Yongshi Wang ◽  
Huimin Liu ◽  
Shoupeng Zhang

Abstract Organic-mineral interactions are pervasive in sedimentary environments; however, the extent of these interactions is not constant and has a significant impact on organic carbon (OC) occurrence and transformation. To understand the evolution of organic-mineral interactions and the implications for OC occurrence and transformation in fine-grained sediments, several shale samples were selected and subjected to physical and chemical sequential treatments. The samples were subjected to pyrolysis, Fourier transform infrared spectrophotometry (FTIR), and adsorption measurements to determine the organic parameters and the mineral surface area (MSA) of the shale samples. The results show that the organic fractions derived from sequential treatments have varying pyrolysis and FTIR characteristics. The correlation between the total OC content and MSA is positive, but it is split according to organic fractions with different attributes. Correlations between the different organic fractions and MSA indicate that the organic matter in shale is mainly adsorbed on mineral surfaces, while a certain portion of organic matter occurs in the pores and is adsorbed on the organic-mineral aggregates, suggesting variable interactions between the organic fractions with different attributes and minerals. From the pyrolysis and FTIR analysis, the organic fractions of different occurrence sites vary in their OC proportion, proclivity to form organic functional groups, and hydrocarbon generation potential. With increasing burial depth, the MSA and hydrogen index as well as OC loading per unit MSA are reduced, and the OC proportions of organic fractions with different attributes have regular trends. These observations indicate that the extent of organic-mineral interactions that can stabilize organic matter gradually decreases, resulting in transformation of the tightly mineral-combined OC into free OC. Our work reveals the heterogeneity in organic matter occurrence and the effect of the evolution of the organic-mineral interactions on OC occurrence and transformation, which is significant in the global carbon cycle and in petroleum systems.


Author(s):  
Nasar Khan ◽  
Wasif Ullah ◽  
Syed M. Siyar ◽  
Bilal Wadood ◽  
Tariq Ayyub ◽  
...  

AbstractThe present study aims to investigate the origin, type, thermal maturity and hydrocarbon generation potential of organic matter and paleo-depositional environment of the Early Paleocene (Danian) Hangu Formation outcropped in the Kala-Chitta Range of Northwest Pakistan, Eastern Tethys. Organic-rich shale and coal intervals were utilized for geochemical analyses including TOC (total organic carbon) and Rock–Eval pyrolysis coupled with carbon (δ13Corg) and nitrogen (δ15Norg) stable isotopes. The organic geochemical results showed that the kerogen Type II (oil/gas prone) and Type III (gas prone) dominate the investigated rock units. The TOC (wt%) and S2 yield indicate that the rock unit quantifies sufficient organic matter (OM) to act as potential source rock. However, the thermal maturity Tmax°C marks the over maturation of the OM, which may be possibly linked with the effect attained from nearby tectonically active Himalayan Foreland Fold-and-Thrust Belt system and associated metamorphosed sequences. The organic geochemical analyses deciphered indigenous nature of the OM and resultant hydrocarbons. The δ13Corg and δ15Norg stable isotopic signatures illustrated enrichment of the OM from both marine and terrestrial sources accumulated into the Hangu Formation. The Paleo-depositional model established using organic geochemical and stable isotopic data for the formation supports its deposition in a shallow marine proximal inner shelf environment with prevalence of sub-oxic to anoxic conditions, a scenario that could enhance the OM preservation. Overall, the formation holds promising coal and shale intervals in terms of organic richness, but due to relatively over thermal maturation, it cannot act as an effective source rock for liquid hydrocarbon generation and only minor amount of dry gas can be expected. In implication, the results of this study suggest least prospects of liquid hydrocarbon generation potential within Hangu Formation at studied sections.


2021 ◽  
Vol 25 (5) ◽  
pp. 701-717
Author(s):  
M.U. Uzoegbu ◽  
C.U. Ugwueze ◽  
J.I. Nwosu

The present work deals with a study based on the geochemical techniques such as biomarkers, Rock-Eval pyrolysis, and detailed petrographic study to evaluate hydrocarbon generation potential of coal by collecting nine coal and carbonaceous shale samples from boreholes in Awgu Formation of Middle Benue Trough, Nigeria. The values vitrinite reflectance (0.94–1.15%VR) and Tmax (446–469°C) confirmed that samples are matured enough to generate liquid and gaseous hydrocarbon in coal. The coal samples also contain sufficient quantity of vitrinite and liptinite macerals varying from 70.28% to 74.10 wt%, which confirm the production of liquid hydrocarbon. The cross-plot between H/C and O/C atomic ratio indicates that samples were predominant in the bituminous rank and having kerogen Type III makes it suitable for hydrocarbon generation. Similar results were found in Rock-Eval pyrolysis analysis (Types II-III and Type III kerogen). The homohopane index (C35/C31 - C35) and homohopane ratio (C35αβS/C34αβS) range from 0.02 to 0.12 and 0.15 to 0.92 indicates oxic condition during organic matter deposition from Lafia-Obi samples. The Moretane/Hopane, Hopane/Hopane + Moretane, Ts/Ts + Tm, 22S/22S + 22RC32homohopane ratios range from 0.06 to 0.14; 0.88 to 0.94; 0.34 to 0.66; and 0.53 to 0.62 and 20S/20S+20R and αββ/αββ+ααα C29 ratios range from 0.43 to 0.58 and 0.42 to 0.55 indicate samples ar e within the late oil window/gas phase. Plots of 22S/22S+22R C32hopanes against C29αββ/αββ+ααα steranes show that Lafia-Obisamples are thermally mature.


2017 ◽  
Vol 47 (2) ◽  
pp. 871
Author(s):  
I. Pyliotis ◽  
A. Zelilidis ◽  
N. Pasadakis ◽  
G. Panagopoulos ◽  
E. Manoutsoglou

Rock-Eval method was used to analyze 53 samples from late Miocene Metochia Formation of Gavdos Island (south of Crete Island) in order to characterize the contained organic matter and to evaluate its potential as source rock. The samples were collected from Metochia Section which consists of about 100 m thick marlssapropels alternations. Organic matter analysis showed that the studied succession could be subdivided into two parts. The lower one, which is generally rich in organic matter and the upper one, which is poor. In the lower part the rich horizons in organic matter are characterized by Kerogen type II, III and IV, with low oxygen content, and with fair to very good potential for gas and/or oil hydrocarbon generation. Additionally, the studied samples are thermally immature. Taking into account that the studied area has never been buried in such a depth to reach conditions of maturation, as well as, that the studied section in Gavdos is connected with Messara basin located in the northeastern and, finally, that the main part of Gavdos basin, which is situated between Gavdos and Crete islands, has continuously encountered subsidence, we could conclude that sediments of Metochia Formation could act as source rocks but in the more deep central part of the Gavdos basin.


1994 ◽  
Vol 34 (1) ◽  
pp. 692 ◽  
Author(s):  
Roger E. Summons ◽  
Dennis Taylor ◽  
Christopher J. Boreham

Maturation parameters based on aromatic hydrocarbons, and particularly the methyl-phenanthrene index (MPI-1), are powerful indicators which can be used to define the oil window in Proterozoic and Early Palaeozoic petroleum source rocks and to compare maturities and detect migration in very old oils . The conventional vitrinite reflectance yardstick for maturity is not readily translated to these ancient sediments because they predate the evolution of the land plant precursors to vitrinite. While whole-rock geochemical tools such as Rock-Eval and TOC are useful for evaluation of petroleum potential, they can be imprecise when applied to maturity assessments.In this study, we carried out a range of detailed geochemical analyses on McArthur Basin boreholes penetrating the Roper Group source rocks. We determined the depth profiles for hydrocarbon generation based on Rock-Eval analysis of whole-rock, solvent-extracted rock, kerogen elemental H/C ratio and pyrolysis GC. Although we found that Hydrogen Index (HI) and the Tmax parameter were strongly correlated with other maturation indicators, they were not sufficiently sensitive nor were they universally applicable. Maturation measurements based on saturated biomarkers were not useful either because of the low abundance of these compounds in most Roper Group bitumens and oils.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1367
Author(s):  
Anastasios Nikitas ◽  
Maria V. Triantaphyllou ◽  
Grigoris Rousakis ◽  
Ioannis Panagiotopoulos ◽  
Nikolaos Pasadakis ◽  
...  

This study presents the results derived from micropaleontological and organic geochemical analyses of mud breccia samples obtained (through gravity coring) from five mud volcanoes (Gelendzhik, Heraklion, Moscow, Milano, Leipzig) located at the Olimpi mud volcano field on the Mediterranean Ridge accretionary complex. A thorough calcareous nannofossil semi-quantitative analysis was performed to determine the biostratigraphic assignment of the deep-seated source strata. Mudstone/shale clasts of different stratigraphic levels were identified and assigned to the Miocene nannofossil biozones CNM10, CNM8–9, CNM7, CNM6–7, and Oligocene CNO4/CNO5. A single mudstone clast from the Gelendzhik plateau, assigned to the biozone CNM10, demonstrated unique micropaleontological and geochemical characteristics, suggesting a sapropelic origin. Subsequently, the total organic carbon (TOC) content and thermal maturity of the collected mud breccias was evaluated using the Rock-Eval pyrolysis technique, and their oil and gas potential was estimated. The pyrolyzed sediments were both organic rich and organic poor (TOC >0.5% or <0.5%, respectively), with their organic matter showing characteristics of the type III kerogen that consists of adequate hydrogen to be gas generative, but insufficient hydrogen to be oil prone. However, the organic matter of the late Serravallian (CNM10) sapropelic mudstone was found to consist of a mixed type II/III kerogen, implying an oil-prone source rock.


Sign in / Sign up

Export Citation Format

Share Document