AKTIVASI KIMIA-FISIK LIMBAH SERUTAN ROTAN MENJADI KARBON AKTIF

2014 ◽  
Vol 14 (1) ◽  
pp. 82-98
Author(s):  
Andy Mizwar

Limbah rotan dari industri kerajinan dan mebel berpotensi untuk dijadikan sebagai bahan baku pembuatan karbon aktif karena memiliki kandungan holoselulosa dan kadar karbon yang tinggi. Penelitian ini bertujuan untuk menganalisis efektifitas dari aktivasi kimia menggunakan larutan natrium klorida (NaCl) yang dilanjutkan dengan aktivasi fisik dalam pembuatan karbon aktif berbahan dasar  limbah serutan rotan. Pembuatan karbon aktif diawali dengan proses karbonisasi pada suhu 250°C selama 1 jam. Selanjutnya aktivasi kimia menggunakan larutan NaCl dengan variasi konsentrasi 10%, 15% dan 20% serta waktu perendaman selama 10, 15 dan 20 jam. Aktivasi fisik dilakukan dengan pembakaran pada suhu 700°C selama 30 menit. Analisis karakteristik fisik-kimia karbon aktif mengacu pada SNI 06-3730-95, meliputi kadar air, fixed carbon, dan iodine number, sedangkan perhitungan luas permukaan spesifik karbon aktif dilakukan dengan Metode Sears. Hasil penelitian ini menunjukkan bahwa kondisi optimum aktivasi kimia terjadi pada konsentrasi NaCl 10% dan lama perendaman 10 jam dengan hasil analisis kadar air 2.90%, fixed carbon 72.70%, iodine number 994.59 mg/g dan luas permukaan 1587.67 m²/g. Peningkatan fixed carbon, iodine number dan luas permukaan karbon aktif berbanding terbalik dengan peningkatan konsentrasi NaCl dan lama waktu perendaman, sedangkan peningkatan kadar air pada karbon aktif berlaku sebaliknya. Rattan waste from handicraft and furniture industry could potentially be used as raw material of activated carbon due to high content of holoselulosa and carbon. This paper investigates the effectiveness of chemical activation using sodium chloride (NaCl) followed by physical activation in the making of activated carbon-based on rattan shavings waste. Preparation of the activated carbon began with the carbonization process at 250°C for 1 hour. Furthermore chemical activation using a variation of NaCl concentrations 10%, 15% and 20% as well as the time of immersion 10, 15 and 20 hours. Physical activation was done by burning at 700°C for 30 minutes. Analysis of the physical and chemical characteristics of the activated carbon was referred to the SNI 06-3730-95, including of moisture content, fixed carbon and iodine number, while the calculation of the specific surface area was done by the Sears’s method. The results of this study showed that the optimum conditions of chemical activation occurred in impregnation by NaCl 10% for 10 hours. The water content, fixed carbon, iodine number and surface area of activated carbon was 2.90%, 72.70%, 994.59 mg/g and 1587.67 m²/g  respectively. The increase values of fixed carbon, iodine number, and surface area was inversely proportional to the increase of NaCl concentration and the length of impregnation time, while the increase of water content applied vice versa.

2020 ◽  
Vol 15 (2) ◽  
pp. 79-89
Author(s):  
Sriatun Sriatun ◽  
Shabrina Herawati ◽  
Icha Aisyah

The starting material for activated carbon was biomass from teak woodcutting, which consists of 47.5% cellulose, 14.4% hemicellulose, and 29.9% lignin. The surface area and iodine number of activated carbons are the factors determining the adsorption ability. This study aims to determine the effect of the activator type on activated carbon characters and test the absorption ability for waste cooking oil. The synthesis stages include carbonization, chemical activation, and then physics activation. The activation process consists of two steps. Firstly, the chemical activation via adding H2SO4, and H3PO4 at room temperature for 24 hours, the second, physical activation by heating at various temperatures of 300, 400, and 500 °C for two hours. The characterizations of activated carbon include water content, ash content, iodine number, functional groups, and surface area. Furthermore, the activated carbon was used as an adsorbent for waste cooking oil for 60 minutes at 100 °C with a stirring of 500 rpm. The results were analyzed using UV-Vis spectrophotometry at a maximum wavelength of 403 nm. The iodine numbers of activated carbon ranged 481.1-1211.4 mg/g and 494.8-1204 mg/g for H3PO4 and H2SO4, respectively.Activated carbon with H3PO4 of 15% and an activation temperature of 400 °C has the highest surface area of 445.30 m2/g.  The H2SO4 dan H3PO4 activators can be used to improve the quality of activated carbon in absorbing dyes in waste cooking oil, where the optimum concentration is 10-15% (v/v). The H3PO4 activator tends to produce a higher bleaching percentage than H2SO4. 


2018 ◽  
Vol 67 ◽  
pp. 02018 ◽  
Author(s):  
Yuliusman ◽  
Nasruddin ◽  
H I Naf’an ◽  
J Sinto ◽  
Y W Nugroho

Activated carbon used as natural gas storage in adsorbed natural gas technology due to physical adsorption properties. Pineapple crown was used as raw material for activated carbon by reason of high lignocellulose content. The purpose of this study is to produce high surface area of activated carbon with high carbon composition (up to 80% weight). Activated carbon were prepared through chemical activation using KOH with various weight ratio and physical activation using N2 with 150 ml/min flowrate. Carbonization of pineapple crown is done at 350°C followed by chemical activation with KOH activator and physical activation. The result of iod number indicate the 1:1 weight KOH ratio gave the highest iod number 1337 mg/mg and 1190.799 m2/g surface area achieved by chemical-physical activation.


Molecules ◽  
2020 ◽  
Vol 25 (19) ◽  
pp. 4561
Author(s):  
Sang Youp Hwang ◽  
Gi Bbum Lee ◽  
Ji Hyun Kim ◽  
Bum Ui Hong ◽  
Jung Eun Park

Spent activated carbon (SAC) usually exhibits a low specific surface area due to its high ash contents. In this study, pre-treatments, such as heat and acid treatments, were optimized to improve this feature. The heat pre-treatment did not reduce the ash content, nor did it increase the surface area. Because metallic ions adsorbed in SACs turn into ash upon the heat treatment. In the acid pre-treatment, the volatiles and fixed carbon were increased with decreasing ash contents. In this study, it was found that the surface area increase was correlated with the ratio between fixed carbon and ash. Among the pre-treatment methods, the combined heat and acid pre-treatment method highly increased the ratio, and therefore led to the surface area increase. Additionally, the acid pre-treatment was carried out using different types of acid (organic and inorganic acids) solutions to further improve the surface areas. The organic acid treatment caused a significant structural collapse compared to the inorganic acid treatment, decreasing the surface area. In particular, H3PO4 effectively removed ashes adsorbed on the activated carbon surface and regenerated the exhausted activated carbon. Both the heat and acid pre-treatments before chemical activation resulted in the positive effects such as strong desorption of pollutants and ashes within the internal structure of the activated carbon. Therefore, the regeneration introduced in this study is methodically the best method to regenerate SAC and maintain a stable structure.


2015 ◽  
Vol 1107 ◽  
pp. 347-352 ◽  
Author(s):  
Collin Glen Joseph ◽  
Duduku Krishniah ◽  
Yun Hin Taufiq-Yap ◽  
Masnah Massuanna ◽  
Jessica William

Abstract. Waste tires, which are an abundant waste product of the automobile industry, were used to prepare activated carbon by means of physical and chemical activation. A two-stage process was used, with a semi-carbonization stage as the first stage, followed by an activation stage as the second stage.All experiments were conducted in a laboratory-scale muffle furnace under static conditions in a self-generated atmosphere. During this process, the effects of the parametric variables of semi-carbonization time (for the physical activation process), activation time and temperature and impregnation ratios (for the chemical activation process) on the percentage yield were studied and compared. Varying these parametric variables yielded interesting results, which in turn affected the adsorption process of 2,4-DCP, which was the simulated pollutant in aqueous form. The optimized percentage yields of activated carbon that were obtained were 41.55% and 44.88% ofthe physical and chemical activation treatment processes respectively.Keywords: Physical activation, chemical activation, waste rubber tires, 2,4-dichlorophenol, activated carbon.


2014 ◽  
Vol 699 ◽  
pp. 87-92 ◽  
Author(s):  
Abdul Rahim Yacob ◽  
Adlina Azmi ◽  
Mohd Khairul Asyraf Amat Mustajab

The characteristics and quality of activated carbons prepared depending on the chemical and physical properties of the starting materials and the activation method used. In this study, activated carbon prepared using pineapple waste. Three parts of pineapple waste which comprises of peel, crown and leaf were studied. For comparison activated carbon were prepared by both physical and chemical activation respectively. Three types of chemicals were used, phosphoric acid (H3PO4), sulphuric acid (H2SO4), and potassium hydroxide (KOH). The preparation includes carbonization at 200°C and activation at the 400°C using muffle furnace. The chemical characterization of the activated carbon was carried out using Thermogravimetric analysis (TGA), Nitrogen gas adsorption analysis and Fourier transform infrared (FTIR). The highest BET surface area was achieved when the pineapple peel soaked in 20% phosphoric acid with a surface area of 1115 m2g-1. FTIR analysis indicates that the reacted pineapple waste successfully converted into activated carbons.


2014 ◽  
Vol 554 ◽  
pp. 22-26 ◽  
Author(s):  
Jibril Mohammed ◽  
Noor Shawal Nasri ◽  
Muhammad Abbas Ahmad Zaini ◽  
Usman Hamza Dadum ◽  
Murtala Musa Ahmed

There is significantly abundant portion of waste agricultural materials in the world serving as environmental challenge, however, they could be converted into useful value added products like activated carbon. Coconut shell based carbons were synthesized using physical activation by CO2 and chemical activation with potassium hydroxide and potassium acetate. The BET surface areas and pore volumes are 361m2/g and 0.19cm3/g for physical activation, 1353m2/g and 0.61cm3/g for activation with KOH and 622m2/g and 0.31cm3/g for potassium acetate activated carbon. From the Fourier Transform Infrared Spectroscopy analysis, hydroxyls, alkenes and carbonyl functional groups were identified with more prominence on the chemically activated porous carbons. Thermogravimetric analysis (TGA) results showed occurrence of moisture pyrolysis at 105°C, the pyrolysis of hemicellulose and cellulose occurred at 160–390°C and lignin at (390-650°C). Carbonization at 700°C and 2hrs had highest yield of 32%. Physical activation yielded lower surface area with approximately 88% micropores. On the other hand, chemically activation yielded higher surface area with elevated mesopores. The porous carbons can be applied to salvage pollution challenges.


2014 ◽  
Vol 881-883 ◽  
pp. 579-583 ◽  
Author(s):  
Ling Zhi Chen ◽  
Dong Xu Miao ◽  
Xiao Jie Feng ◽  
Jian Zhong Xu

Activated carbons (AC) were produced by chemical activation with potassium hydroxide (KOH) at 800°C from chars that were carbonized from reedy grass leaves at 450°C in N2atmosphere. The effects of the weight ratio of KOH/char ( impregnation ratio), activation temperature and duration time were examined. Adsorption capacity was demonstrated with iodine number. BET surface area, pore volume and pore size of activated carbons were characterized by N2adsorption isotherms. The maximum surface area and iodine number of the AC was 1100 m2/g and 1080 mg/g produced at 800°C for2h and impregnation ratio is 4:1.The characteristics of activated carbons were determined by Infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Thermal gravimetry (TG/DTA) analysis of raw material was carried out.


2018 ◽  
Vol 10 (3) ◽  
pp. 149
Author(s):  
Mahmud Sudibandriyo ◽  
L Lydia

Surface area characterization of activated carbon from sugarcane baggase by chemical activationAdsorption is one the process with many applications in the industries such as in a separation or in gas storage. In this adsorption, adsorbent selection is the most important thing. One of the adsorbent most suitable for this process is activated carbon. Previous studies show that high surface area of activated carbon can be produced from sugarcane bagasse using activator ZnCl2. The research’s goal is to produce activated carbon from sugarcane bagasse and determine the effects of activator on the surface area of activated carbon produced. Activators used in this research are KOH and ZnCl2 with the mass ratio of activator/carbon are 1/1, 2/1 and 3/1. The results show that The highest surface area, 938,2 m2/g, is obtained by activation using KOH with mass ratio of activator/carbon 3/1, whereas the highest surface area by activation using ZnCl2 is 632 m2/g with mass ratio of activator/carbon 2/1. For comparison, preparation of activated carbon by physical activation is also done and the surface area is 293 m2/g.Keywords: Activated carbon, chemical activation, sugarcane bagasse, KOH, ZnCl2 Abstrak Adsorpsi merupakan salah satu proses yang banyak digunakan dalam industri baik dalam pemisahan maupun untuk penyimpanan gas. Pada proses adsorpsi ini, pemilihan adsorben merupakan hal yang sangat penting. Salah satu jenis adsorben yang sangat cocok untuk proses ini adalah karbon aktif. Penelusuran studi sebelumnya menunjukkan bahwa karbon aktif dengan luas permukaan yang cukup tinggi dapat dibuat dari ampas tebu dengan menggunakan aktivator ZnCl2. Penelitian ini bertujuan untuk menghasilkan karbon aktif dari ampas tebu dengan aktivasi kimia serta mengetahui pengaruh aktivator terhadap luas permukaan karbon aktif yang dihasilkan. Aktivator yang digunakan dalam penelitian ini adalah KOH dan ZnCl2 dengan rasio massa aktivator/massa karbon 1/1, 2/1, dan 3/1. Aktivasi dilakukan pada temperatur 700 oC selama 1 jam. Hasil penelitian menunjukkan bahwa luas permukaan tertinggi sebesar 938,2 m2/g diperoleh dengan aktivasi menggunakan KOH dengan rasio massa aktivator/massa arang 3/1, sedangkan aktivasi dengan menggunakan ZnCl2 diperoleh luas permukaan tertinggi sebesar 632 m2/g dengan rasio massa aktivator/massa arang 2/1. Sebagai pembanding, pada penelitian ini juga dilakukan pembuatan karbon aktif dengan metode aktivasi fisika dan diperoleh luas permukaan karbon aktif sebesar 293 m2/g.Kata kunci: Aktivasi kimia, ampas tebu, karbon aktif, KOH, ZnCl2


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2047 ◽  
Author(s):  
Katarzyna Januszewicz ◽  
Paweł Kazimierski ◽  
Maciej Klein ◽  
Dariusz Kardaś ◽  
Justyna Łuczak

Pyrolysis of straw pellets and wood strips was performed in a fixed bed reactor. The chars, solid products of thermal degradation, were used as potential materials for activated carbon production. Chemical and physical activation processes were used to compare properties of the products. The chemical activation agent KOH was chosen and the physical activation was conducted with steam and carbon dioxide as oxidising gases. The effect of the activation process on the surface area, pore volume, structure and composition of the biochar was examined. The samples with the highest surface area (1349.6 and 1194.4 m2/g for straw and wood activated carbons, respectively) were obtained when the chemical activation with KOH solution was applied. The sample with the highest surface area was used as an adsorbent for model wastewater contamination removal.


2014 ◽  
Vol 1043 ◽  
pp. 193-197
Author(s):  
Noor Shawal Nasri ◽  
Jibril Mohammed ◽  
Muhammad Abbas Ahmad Zaini ◽  
Usman Dadum Hamza ◽  
Husna Mohd. Zain ◽  
...  

There is significant portion of agricultural wastes in the world posing environmental challenge; however, they could be converted into useful products like activated carbon. In this study, coconut shell based carbons were synthesized using chemical activation with potassium acetate (PAAC), potassium hydroxide (PHAC) and physical activation by CO2 (CSAC). The properties of potassium acetate-activated carbon were characterized and the results were compared with the other activation methods. The pyrolysis temperature of 700°C for 2h yielded 32% of char. The BET surface area and pore volume of PAAC are 622m2/g and 0.31cm3/g; while 369m2/g and 0.19cm3/g, and 1354m2/g and 0.61cm3/g were recorded for CSAC and PHAC, respectively. CSAC yielded lower surface area with approximately 88% micropores. On the other hand, PAAC yielded higher surface area with approximately 50% of both micropores and mesopores, whereby this heteroporous property would suffice for a wider range of application. From the Fourier Transform Infrared Spectroscopy analysis, hydroxyls, alkenes, carbonyls and aromatics functional groups were identified with more prominent peaks on the chemically activated porous carbons. From thermogravimetric analysis (TGA), lignin decomposition occurred in a wider temperature range (390-650°C). The properties of PAAC could offer a sustainable means for treatment of toxic waste streams.


Sign in / Sign up

Export Citation Format

Share Document